Evaluate Statement (1), which states that x + y > z. Plug In values that satisfy this statement and determine the answer to the question. Plug In a starting portfolio value of $200 and values of x = 50, y = 50, and z = 10. These values satisfy Statement (1), because 50 + 50 > 10. Using these numbers the value of the portfolio would first increase 50% to $300, then increase another 50% to $450, then decrease by 10% to $405. Since $405 is greater than $200 the portfolio would be more than it was in 1980. The answer to the question is "Yes". Now Plug In different values to try to get an answer of "No." Plug In a starting portfolio value of $200 and values of x = 100, y = 100, and z = 100. These values satisfy Statement (1), because 100 + 100 > 100. The portfolio would first increase 100% to $400, then increase another 100% to $800, then decrease by 100% to have a final value of $0. Since $0 is less than $200 the portfolio would be worth less than it was in 1980. Now, the answer to the question is "No". When different numbers that satisfy a statement yield different answers to the question, the statement is insufficient. Write down BCE.
Now, evaluate Statement (2), which states that y − x > z. Plug In values that satisfy this statement and determine the answer to the question. Plug In a starting portfolio value of $200 and values of x = 10, y = 50, and z = 10. These values satisfy Statement (2), because 50 – 10 > 10. Using these numbers the value of the portfolio would first increase 10% to $220, then increase another 50% to $330, then decrease by 10% to $297. Since $297 is greater than $200 the portfolio would be worth more than it was in 1980. The answer to the question is "Yes". Now Plug In different values to try to get an answer of "No." Plug In a starting portfolio value of $200 and values of x = 10, y = 200, and z = 100. These values satisfy Statement (2), because 200 – 10 > 100. Using these values the portfolio would first increase 10% to $220, then increase another 200% to $660, then decrease by 100% to have a final value of $0. Since $0 is less than $200 the value of the portfolio is worth less than it was in 1980. The answer to the question is "No". When different numbers that satisfy a statement yield different answers to the question, the statement is insufficient. Eliminate B.
Now, evaluate Statement (1) and Statement (2) together. Plug In values that satisfy both of the statements at once and determine the answer to the question. The values used to evaluate Statement (2) also satisfy Statement (1), so both answers "Yes" and "No" are possible. Therefore, Statements (1) and (2) together are insufficient. Eliminate C.
The correct answer is choice E.