Bunuel
Six numbers are randomly selected and placed within a set. If the set has a range of 16, a median of 6, a mean of 7 and a mode of 7, what is the greatest of the six numbers?
(1) The sum of the two smallest numbers is one-fifth of the sum of the two greatest numbers
(2) The middle two numbers are 5 and 7
Very nice problem (in which a "structured candidate" has considerable advantage)!
\({a_1} \le {a_2} \le \ldots \le {a_6}\,\,\,\,\,\left\{ \matrix{\\
\,{a_6} = {a_1} + 16\, \hfill \cr \\
\,{a_3} + {a_4} = 12 \hfill \cr \\
\,\sum\nolimits_6 {\, = } \,\,\,42 \hfill \cr \\
\,7{\rm{s}}\,\,{\rm{appear}}\,\,{\rm{most}}\, \hfill \cr} \right.\)
\(? = {a_6}\)
We "MUST" start with statement (2): it is easier and it will help us "gain knowledge and sensitivity" to what is really going on!
\(\left( 2 \right)\,\,\,\,{a_1}\,\,\,{a_2}\,\,\,5\,\,\,7\,\,\,7\,\,\,{a_6}\mathop \ne \limits^{\left( {**} \right)} 7\,\,\,\,\,\left\{ \matrix{\\
\,{a_6} = {a_1} + 16\, \hfill \cr \\
\,{a_3} + {a_4} = 12\,\,\,\,\left( {{\rm{sure}}} \right) \hfill \cr \\
\,\sum\nolimits_6 {\, = } \,\,\,42\,\,\,\left( * \right) \hfill \cr \\
\,7{\rm{s}}\,\,{\rm{appear}}\,\,{\rm{most}}\,\,\,\,\left( {\,\left( {**} \right)\,\,{a_6} = 7\,\,\, \Rightarrow \,\,\,{a_1} = 7 - 16 = - 9\,\,\,\,\mathop \Rightarrow \limits^{\left( * \right)} \,\,{a_2} = 25 > {a_3}\,\,{\rm{impossible}}\,} \right)\, \hfill \cr} \right.\)
\(\left\{ \matrix{\\
\,{\rm{Take}}\,\,\left( {{a_1},{a_6},{a_2}} \right) = \left( {1,17,5} \right)\,\,\,{\rm{viable}}\,\,\,\,\,\, \Rightarrow \,\,\,\,\,{a_6} = \,\,17 \hfill \cr \\
\,{\rm{Take}}\,\,\left( {{a_1},{a_6},{a_2}} \right) = \left( {2,18,3} \right)\,\,\,{\rm{viable}}\,\,\,\,\,\, \Rightarrow \,\,\,\,\,{a_6} = \,\,18\,\, \hfill \cr} \right.\,\,\,\,\,\, \Rightarrow \,\,\,\,\,{\rm{INSUFF}}.\)
\(\left( 1 \right)\,\,\,5\left( {{a_1} + {a_2}} \right) = {a_5} + {a_6}\,\,\,\,\left\{ \matrix{\\
\,{a_6} = {a_1} + 16\, \hfill \cr \\
\,{a_3} + {a_4} = 12 \hfill \cr \\
\,\sum\nolimits_6 {\, = } \,\,\,42 \hfill \cr \\
\,7{\rm{s}}\,\,{\rm{appear}}\,\,{\rm{most}}\, \hfill \cr} \right.\)
\({a_3} = 7\,\,\,\, \Rightarrow \,\,{a_4} = 12 - 7 = 5 < {a_3}\,\,\,\,\, \Rightarrow \,\,\,\,{\rm{impossible}}\)
\({a_{`5}} = {a_6} = 7\,\,\,\, \Rightarrow \,\,\,\,\left\{ \matrix{\\
\,{a_1} = 7 - 16 = - 9 \hfill \cr \\
\,{a_2} = \sum\nolimits_6 {\, - \left[ {{a_1} + \left( {{a_3} + {a_4}} \right) + {a_5} + {a_6}} \right] = } \,\,42 - \left( { - 9 + 12 + 2 \cdot 7} \right) = 25\,\,\, > \,\,\,{a_5} \hfill \cr} \right.\,\,\,\,\,\,\, \Rightarrow \,\,\,\,{\rm{impossible}}\)
\({\rm{Hence}}:\,\,\,\,{a_1}\,\,\,{a_2}\,\,\,{a_3}\,\,\,7\,\,\,7\,\,\,{a_6} \ne 7\,\,\,\,\,\left\{ \matrix{\\
\,{a_6} = {a_1} + 16\, \hfill \cr \\
\,{a_3} + {a_4} = 12\,\,\,\,\,\,\, \Rightarrow \,\,\,\,\,\,{a_3} = 12 - 7 = 5 \hfill \cr \\
\,\sum\nolimits_6 {\, = } \,\,\,42\,\,\,\,\,\,\, \Rightarrow \,\,\,\,\,\,{a_1} + {a_2} + {a_6} = 42 - {a_3} - \left( {{a_4} + {a_5}} \right) = 42 - 5 - 14 = 23 \hfill \cr \\
\,5\left( {{a_1} + {a_2}} \right) = {a_5} + {a_6}\,\,\,\,\,\,\, \Rightarrow \,\,\,\,\,\,5\left( {23 - {a_6}} \right) = 7 + {a_6}\,\,\,\,\, \Rightarrow \,\,\,\,? = {a_6}\,\,\,{\rm{unique}} \hfill \cr} \right.\)
This solution follows the notations and rationale taught in the GMATH method.
Regards,
Fabio.