Last visit was: 18 Nov 2025, 14:06 It is currently 18 Nov 2025, 14:06
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 18 Nov 2025
Posts: 105,355
Own Kudos:
Given Kudos: 99,964
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,355
Kudos: 778,062
 [44]
1
Kudos
Add Kudos
43
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
chetan2u
User avatar
GMAT Expert
Joined: 02 Aug 2009
Last visit: 15 Nov 2025
Posts: 11,238
Own Kudos:
43,696
 [7]
Given Kudos: 335
Status:Math and DI Expert
Location: India
Concentration: Human Resources, General Management
GMAT Focus 1: 735 Q90 V89 DI81
Products:
Expert
Expert reply
GMAT Focus 1: 735 Q90 V89 DI81
Posts: 11,238
Kudos: 43,696
 [7]
7
Kudos
Add Kudos
Bookmarks
Bookmark this Post
General Discussion
User avatar
Fido10
Joined: 12 Aug 2020
Last visit: 27 Aug 2024
Posts: 103
Own Kudos:
165
 [4]
Given Kudos: 298
Location: Morocco
Products:
Posts: 103
Kudos: 165
 [4]
1
Kudos
Add Kudos
3
Bookmarks
Bookmark this Post
User avatar
ThatDudeKnows
Joined: 11 May 2022
Last visit: 27 Jun 2024
Posts: 1,070
Own Kudos:
977
 [3]
Given Kudos: 79
Expert
Expert reply
Posts: 1,070
Kudos: 977
 [3]
2
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
Bunuel
If the least common multiple of positive integers, x, y and z is 30, then how many different values can \(|x - y| + |x - z| + |y - z|\) take ?

A. 17
B. 18
C. 19
D. 20
E. 21

 


This question was provided by GMAT Club
for the GMAT Club World Cup Competition

Compete, Get Better, Win prizes and more

 


The possible values for x, y, and z are 30, 15, 10, 6, 5, 3, 2, 1.

The only way to have x=y=z is if they are all 30. In that case, our sum will be 0+0+0 = 0.

If we have at least two distinct values and the largest is 30, the other two could be anything in the list.
Let's look at 30,1,1 and 30,2,1 to see if we can learn anything.
30,1,1: 29+29+0 = 58
30,2,1: 28+29+1 = 58
Aha! When we have at least two distinct values, (the distance between the largest and the median)+(the distance between the median and the smallest)=(the distance between the largest and the smallest), so our sum will be 2x(the distance between the largest and the smallest). We are therefore looking for the number of distinct min/max ranges among triples.

Since we are taking all three distances between any two elements, A,B,C = B,A,C = C,B,A etc.

Here are the possible triples. We know we can eliminate any that have a min-max range that we've already listed because they will have a sum for which we've already accounted.

30,30,30 - 0
30,30,15 - 15
30,30,10 - 20
30,30,6 - 24
30,30,5 - 25
30,30,3 - 27
30,30,2 - 28
30,30,1 - 29
30,15,15 - 15 Eliminate
30,15,10 - 20 Eliminate
30,15,6 - 24 Eliminate
30,15,5 - 25 Eliminate
30,15,3 - 27 Eliminate
30,15,2 - 28 Eliminate
30,15,1 - 29 Eliminate
15,10,10 - 5
15,10,6 - 9
15,10,5 - 10
15,10,3 - 12
15,10,2 - 13
15,10,1 - 14
10,6,6 - 4
10,6,5 - 5 Eliminate
10,6,3 - 7
10,6,2 - 8
10,6,1 - 9 Eliminate
10,3,3 - 7 Eliminate
10,3,2 - 8 Eliminate
10,3,1 - 9 Eliminate
6,5,5 - 1
6,5,3 - 3
6,5,2 - 4 Eliminate
6,5,1 - 5 Eliminate

Count up the non-eliminated ones. 19.

Answer choice C.
User avatar
Kinshook
User avatar
Major Poster
Joined: 03 Jun 2019
Last visit: 18 Nov 2025
Posts: 5,793
Own Kudos:
Given Kudos: 161
Location: India
GMAT 1: 690 Q50 V34
WE:Engineering (Transportation)
Products:
GMAT 1: 690 Q50 V34
Posts: 5,793
Kudos: 5,508
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel please check my solution
OA is D 20 and NOT C 19.
Please count the solutions.

Bunuel
If the least common multiple of positive integers, x, y and z is 30, then how many different values can \(|x - y| + |x - z| + |y - z|\) take ?

A. 17
B. 18
C. 19
D. 20
E. 21

 


This question was provided by GMAT Club
for the GMAT Club World Cup Competition

Compete, Get Better, Win prizes and more

 

User avatar
Kinshook
User avatar
Major Poster
Joined: 03 Jun 2019
Last visit: 18 Nov 2025
Posts: 5,793
Own Kudos:
Given Kudos: 161
Location: India
GMAT 1: 690 Q50 V34
WE:Engineering (Transportation)
Products:
GMAT 1: 690 Q50 V34
Posts: 5,793
Kudos: 5,508
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel please check the solution
and correct OA as D 20

Kinshook
Asked: If the least common multiple of positive integers, x, y and z is 30, then how many different values can \(|x - y| + |x - z| + |y - z|\) take ?

30 = 2*3*5
Number of factors of 30 = {1,2,3,5,6,10,15,30} = (1+2)(1+3)(1+5) : 8 factors
LCM(x,y,z) = 30

Without loss of generality, let us assume that x>=y>=z

|x - y| + |x - z| + |y - z| = (x-y) + (x-z) + (y-z) = 2x -2z = 2(x-z)
x-z = {29,28,27,25,24,20,15,14,13,12,10,9,8,7,5,4,3,2,1,0} : 20 different values
|x - y| + |x - z| + |y - z| = 2(x-z) = {58,56,54,50,48,40,30,28,26,24,20,18,16,14,10,8,6,4,2,0} : 20 different values

For illustration: -
If x=30; y=30, z=30; |x - y| + |x - z| + |y - z| = 0
If x=30; y=30, z=15; |x - y| + |x - z| + |y - z| = 30
If x=30; y=30, z=10; |x - y| + |x - z| + |y - z| = 40
If x=30; y=30, z=6; |x - y| + |x - z| + |y - z| = 48
If x=30; y=30, z=5; |x - y| + |x - z| + |y - z| = 50
If x=30; y=30, z=3; |x - y| + |x - z| + |y - z| = 54
If x=30; y=30, z=2; |x - y| + |x - z| + |y - z| = 56
If x=30; y=30, z=1; |x - y| + |x - z| + |y - z| = 58

If x=15; y=15, z=10; |x - y| + |x - z| + |y - z| = 10
If x=15; y=15, z=6; |x - y| + |x - z| + |y - z| = 18
If x=15; y=15, z=5; |x - y| + |x - z| + |y - z| = 20
If x=15; y=15, z=3; |x - y| + |x - z| + |y - z| = 24
If x=15; y=15, z=2; |x - y| + |x - z| + |y - z| = 26
If x=15; y=15, z=1; |x - y| + |x - z| + |y - z| = 28

If x=10; y=10, z=6; |x - y| + |x - z| + |y - z| = 8
If x=10; y=10, z=5; |x - y| + |x - z| + |y - z| = 10
If x=10; y=10, z=3; |x - y| + |x - z| + |y - z| = 14
If x=10; y=10, z=2; |x - y| + |x - z| + |y - z| = 16
If x=10; y=10, z=1; |x - y| + |x - z| + |y - z| = 18

If x=6; y=6, z=5; |x - y| + |x - z| + |y - z| = 2
If x=6; y=6, z=3; |x - y| + |x - z| + |y - z| = 6
If x=6; y=6, z=2; |x - y| + |x - z| + |y - z| = 8
If x=6; y=6, z=1; |x - y| + |x - z| + |y - z| = 10

If x=5; y=5, z=3; |x - y| + |x - z| + |y - z| = 4
If x=5; y=5, z=2; |x - y| + |x - z| + |y - z| = 6
If x=5; y=5, z=1; |x - y| + |x - z| + |y - z| = 8

If x=3; y=3, z=2; |x - y| + |x - z| + |y - z| = 2
If x=3; y=3, z=1; |x - y| + |x - z| + |y - z| = 4

If x=2; y=2, z=1; |x - y| + |x - z| + |y - z| = 2

|x - y| + |x - z| + |y - z| + {0,2,4,6,8,10,14,16,18,20,24,26,28,30,40,48,50,54,56,58} : 20 different values.

IMO D
User avatar
ThatDudeKnows
Joined: 11 May 2022
Last visit: 27 Jun 2024
Posts: 1,070
Own Kudos:
Given Kudos: 79
Expert
Expert reply
Posts: 1,070
Kudos: 977
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Kinshook
Bunuel please check the solution
and correct OA as D 20

Kinshook
Asked: If the least common multiple of positive integers, x, y and z is 30, then how many different values can \(|x - y| + |x - z| + |y - z|\) take ?

30 = 2*3*5
Number of factors of 30 = {1,2,3,5,6,10,15,30} = (1+2)(1+3)(1+5) : 8 factors
LCM(x,y,z) = 30

Without loss of generality, let us assume that x>=y>=z

|x - y| + |x - z| + |y - z| = (x-y) + (x-z) + (y-z) = 2x -2z = 2(x-z)
x-z = {29,28,27,25,24,20,15,14,13,12,10,9,8,7,5,4,3,2,1,0} : 20 different values
|x - y| + |x - z| + |y - z| = 2(x-z) = {58,56,54,50,48,40,30,28,26,24,20,18,16,14,10,8,6,4,2,0} : 20 different values

For illustration: -
If x=30; y=30, z=30; |x - y| + |x - z| + |y - z| = 0
If x=30; y=30, z=15; |x - y| + |x - z| + |y - z| = 30
If x=30; y=30, z=10; |x - y| + |x - z| + |y - z| = 40
If x=30; y=30, z=6; |x - y| + |x - z| + |y - z| = 48
If x=30; y=30, z=5; |x - y| + |x - z| + |y - z| = 50
If x=30; y=30, z=3; |x - y| + |x - z| + |y - z| = 54
If x=30; y=30, z=2; |x - y| + |x - z| + |y - z| = 56
If x=30; y=30, z=1; |x - y| + |x - z| + |y - z| = 58

If x=15; y=15, z=10; |x - y| + |x - z| + |y - z| = 10
If x=15; y=15, z=6; |x - y| + |x - z| + |y - z| = 18
If x=15; y=15, z=5; |x - y| + |x - z| + |y - z| = 20
If x=15; y=15, z=3; |x - y| + |x - z| + |y - z| = 24
If x=15; y=15, z=2; |x - y| + |x - z| + |y - z| = 26
If x=15; y=15, z=1; |x - y| + |x - z| + |y - z| = 28

If x=10; y=10, z=6; |x - y| + |x - z| + |y - z| = 8
If x=10; y=10, z=5; |x - y| + |x - z| + |y - z| = 10
If x=10; y=10, z=3; |x - y| + |x - z| + |y - z| = 14
If x=10; y=10, z=2; |x - y| + |x - z| + |y - z| = 16
If x=10; y=10, z=1; |x - y| + |x - z| + |y - z| = 18

If x=6; y=6, z=5; |x - y| + |x - z| + |y - z| = 2
If x=6; y=6, z=3; |x - y| + |x - z| + |y - z| = 6
If x=6; y=6, z=2; |x - y| + |x - z| + |y - z| = 8
If x=6; y=6, z=1; |x - y| + |x - z| + |y - z| = 10

If x=5; y=5, z=3; |x - y| + |x - z| + |y - z| = 4
If x=5; y=5, z=2; |x - y| + |x - z| + |y - z| = 6
If x=5; y=5, z=1; |x - y| + |x - z| + |y - z| = 8

If x=3; y=3, z=2; |x - y| + |x - z| + |y - z| = 2
If x=3; y=3, z=1; |x - y| + |x - z| + |y - z| = 4

If x=2; y=2, z=1; |x - y| + |x - z| + |y - z| = 2

|x - y| + |x - z| + |y - z| + {0,2,4,6,8,10,14,16,18,20,24,26,28,30,40,48,50,54,56,58} : 20 different values.

IMO D

Kinshook

If x=15; y=15, z=5, the LCM is 15, not 30.
15, 15, 3 --> LCM 15, not 30
10, 10, 5 --> LCM 10, not 30
10, 10, 2 --> LCM 10, not 30
10, 10, 1 --> LCM 10, not 30
6, 6, 3 --> LCM 6, not 30
6, 6, 2 --> LCM 6, not 30
6, 6, 1 --> LCM 6, not 30
5, 5, 3 --> LCM 15, not 30
5, 5, 1 --> LCM 5, not 30
3, 3, 1 --> LCM 3, not 30
2, 2, 1 --> LCM 2, not 30

Your list also omits all the options where the two larger values are not equal:
30,15,15
30,15,10
30,15,6
30,15,5
30,15,3
30,15,2
30,15,1
15,10,10
15,10,6
15,10,5
15,10,3
15,10,2
15,10,1
10,6,6
10,6,5
10,6,3
10,6,2
10,6,1
10,3,3
10,3,2
10,3,1
6,5,5
6,5,3
6,5,2
6,5,1
User avatar
Kinshook
User avatar
Major Poster
Joined: 03 Jun 2019
Last visit: 18 Nov 2025
Posts: 5,793
Own Kudos:
Given Kudos: 161
Location: India
GMAT 1: 690 Q50 V34
WE:Engineering (Transportation)
Products:
GMAT 1: 690 Q50 V34
Posts: 5,793
Kudos: 5,508
Kudos
Add Kudos
Bookmarks
Bookmark this Post
ThatDudeKnows
OK. Thanks

ThatDudeKnows
Kinshook
Bunuel please check the solution
and correct OA as D 20

Kinshook
Asked: If the least common multiple of positive integers, x, y and z is 30, then how many different values can \(|x - y| + |x - z| + |y - z|\) take ?

30 = 2*3*5
Number of factors of 30 = {1,2,3,5,6,10,15,30} = (1+2)(1+3)(1+5) : 8 factors
LCM(x,y,z) = 30

Without loss of generality, let us assume that x>=y>=z

|x - y| + |x - z| + |y - z| = (x-y) + (x-z) + (y-z) = 2x -2z = 2(x-z)
x-z = {29,28,27,25,24,20,15,14,13,12,10,9,8,7,5,4,3,2,1,0} : 20 different values
|x - y| + |x - z| + |y - z| = 2(x-z) = {58,56,54,50,48,40,30,28,26,24,20,18,16,14,10,8,6,4,2,0} : 20 different values

For illustration: -
If x=30; y=30, z=30; |x - y| + |x - z| + |y - z| = 0
If x=30; y=30, z=15; |x - y| + |x - z| + |y - z| = 30
If x=30; y=30, z=10; |x - y| + |x - z| + |y - z| = 40
If x=30; y=30, z=6; |x - y| + |x - z| + |y - z| = 48
If x=30; y=30, z=5; |x - y| + |x - z| + |y - z| = 50
If x=30; y=30, z=3; |x - y| + |x - z| + |y - z| = 54
If x=30; y=30, z=2; |x - y| + |x - z| + |y - z| = 56
If x=30; y=30, z=1; |x - y| + |x - z| + |y - z| = 58

If x=15; y=15, z=10; |x - y| + |x - z| + |y - z| = 10
If x=15; y=15, z=6; |x - y| + |x - z| + |y - z| = 18
If x=15; y=15, z=5; |x - y| + |x - z| + |y - z| = 20
If x=15; y=15, z=3; |x - y| + |x - z| + |y - z| = 24
If x=15; y=15, z=2; |x - y| + |x - z| + |y - z| = 26
If x=15; y=15, z=1; |x - y| + |x - z| + |y - z| = 28

If x=10; y=10, z=6; |x - y| + |x - z| + |y - z| = 8
If x=10; y=10, z=5; |x - y| + |x - z| + |y - z| = 10
If x=10; y=10, z=3; |x - y| + |x - z| + |y - z| = 14
If x=10; y=10, z=2; |x - y| + |x - z| + |y - z| = 16
If x=10; y=10, z=1; |x - y| + |x - z| + |y - z| = 18

If x=6; y=6, z=5; |x - y| + |x - z| + |y - z| = 2
If x=6; y=6, z=3; |x - y| + |x - z| + |y - z| = 6
If x=6; y=6, z=2; |x - y| + |x - z| + |y - z| = 8
If x=6; y=6, z=1; |x - y| + |x - z| + |y - z| = 10

If x=5; y=5, z=3; |x - y| + |x - z| + |y - z| = 4
If x=5; y=5, z=2; |x - y| + |x - z| + |y - z| = 6
If x=5; y=5, z=1; |x - y| + |x - z| + |y - z| = 8

If x=3; y=3, z=2; |x - y| + |x - z| + |y - z| = 2
If x=3; y=3, z=1; |x - y| + |x - z| + |y - z| = 4

If x=2; y=2, z=1; |x - y| + |x - z| + |y - z| = 2

|x - y| + |x - z| + |y - z| + {0,2,4,6,8,10,14,16,18,20,24,26,28,30,40,48,50,54,56,58} : 20 different values.

IMO D

Kinshook

If x=15; y=15, z=5, the LCM is 15, not 30.
15, 15, 3 --> LCM 15, not 30
10, 10, 5 --> LCM 10, not 30
10, 10, 2 --> LCM 10, not 30
10, 10, 1 --> LCM 10, not 30
6, 6, 3 --> LCM 6, not 30
6, 6, 2 --> LCM 6, not 30
6, 6, 1 --> LCM 6, not 30
5, 5, 3 --> LCM 15, not 30
5, 5, 1 --> LCM 5, not 30
3, 3, 1 --> LCM 3, not 30
2, 2, 1 --> LCM 2, not 30

Your list also omits all the options where the two larger values are not equal:
30,15,15
30,15,10
30,15,6
30,15,5
30,15,3
30,15,2
30,15,1
15,10,10
15,10,6
15,10,5
15,10,3
15,10,2
15,10,1
10,6,6
10,6,5
10,6,3
10,6,2
10,6,1
10,3,3
10,3,2
10,3,1
6,5,5
6,5,3
6,5,2
6,5,1
User avatar
Adarsh_24
Joined: 06 Jan 2024
Last visit: 03 Apr 2025
Posts: 251
Own Kudos:
Given Kudos: 2,016
Posts: 251
Kudos: 57
Kudos
Add Kudos
Bookmarks
Bookmark this Post
chetan2u

Bunuel
If the least common multiple of positive integers, x, y and z is 30, then how many different values can \(|x - y| + |x - z| + |y - z|\) take ?

A. 17
B. 18
C. 19
D. 20
E. 21

 


This question was provided by GMAT Club
for the GMAT Club World Cup Competition

Compete, Get Better, Win prizes and more

 

gmatophobia, the question is about realising the way the MOD will behave in different scenarios. I have not gone through the replies above so if it is a repeat, pardon me.

|x-y|+|x-z|+|y-z|
There are various ways x, y and z can be placed.
1) x>y>z: This will make x-y, x-z and y-z positive. So, |x-y|+|x-z|+|y-z|=x-y+x-z+y-z=2(x-z)
2) z>x>y: This will make x-y positive and, x-z and y-z negative. So, |x-y|+|x-z|+|y-z|=x-y+z-x+z-y=2(z-y)
We can check others too, but in each case we get the expression equal to TWICE of the RANGE, that is Max-Min.

Knowing this, let us find the different values of the ranges.

For this, we require to know different values that these integers can take.
Factors of 30: 30,15,10,6,5,3,2,1

Differences:
Largest is 30: 29,28,27,25,24,20,15,0
Largest is 15: 14,13,12,10,9,5,0
Largest is 10: 9,8,7,5,4,0
Largest is 6: 5,4,3,1,0
Largest is 5: 4,3,2,0
Largest is 3: 2,1,0
Largest is 2: 1,0

Different values: 29,28,27,25,24,20,15,14,13,12,10,9,8,7,5,4,3,2,1

19 values


C
­Bunuel chetan2u Why are we not considering difference 0? Is it implied that x, y and z cant repeat?­
If so, how can 1 be considered without repeating once?
User avatar
CityOfStar
Joined: 29 Dec 2023
Last visit: 05 Jun 2025
Posts: 8
Own Kudos:
Given Kudos: 63
GMAT Focus 1: 645 Q86 V81 DI78
GMAT Focus 1: 645 Q86 V81 DI78
Posts: 8
Kudos: 30
Kudos
Add Kudos
Bookmarks
Bookmark this Post
chetan2u

Bunuel
If the least common multiple of positive integers, x, y and z is 30, then how many different values can \(|x - y| + |x - z| + |y - z|\) take ?

A. 17
B. 18
C. 19
D. 20
E. 21

 


This question was provided by GMAT Club
for the GMAT Club World Cup Competition

Compete, Get Better, Win prizes and more

 

gmatophobia, the question is about realising the way the MOD will behave in different scenarios. I have not gone through the replies above so if it is a repeat, pardon me.

|x-y|+|x-z|+|y-z|
There are various ways x, y and z can be placed.
1) x>y>z: This will make x-y, x-z and y-z positive. So, |x-y|+|x-z|+|y-z|=x-y+x-z+y-z=2(x-z)
2) z>x>y: This will make x-y positive and, x-z and y-z negative. So, |x-y|+|x-z|+|y-z|=x-y+z-x+z-y=2(z-y)
We can check others too, but in each case we get the expression equal to TWICE of the RANGE, that is Max-Min.

Knowing this, let us find the different values of the ranges.

For this, we require to know different values that these integers can take.
Factors of 30: 30,15,10,6,5,3,2,1

Differences:
Largest is 30: 29,28,27,25,24,20,15,0
Largest is 15: 14,13,12,10,9,5,0
Largest is 10: 9,8,7,5,4,0
Largest is 6: 5,4,3,1,0
Largest is 5: 4,3,2,0
Largest is 3: 2,1,0
Largest is 2: 1,0

Different values: 29,28,27,25,24,20,15,14,13,12,10,9,8,7,5,4,3,2,1

19 values


C
­Largesr one can only till 5, and in this case only 5,3,2 will work, so Max-Min is only 3, not 2. Your answer is lacking of 0 but adding 2.

Different values: 29,28,27,25,24,20,15,14,13,12,10,9,8,7,5,4,3,0,1
Moderators:
Math Expert
105355 posts
Tuck School Moderator
805 posts