Last visit was: 19 Nov 2025, 23:02 It is currently 19 Nov 2025, 23:02
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
Pansi
Joined: 04 Jul 2011
Last visit: 01 Dec 2019
Posts: 42
Own Kudos:
320
 [54]
Given Kudos: 87
Status:Fighting hard
GMAT Date: 10-01-2012
Posts: 42
Kudos: 320
 [54]
5
Kudos
Add Kudos
49
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,394
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,394
Kudos: 778,403
 [28]
11
Kudos
Add Kudos
17
Bookmarks
Bookmark this Post
User avatar
MacFauz
Joined: 02 Jul 2012
Last visit: 19 Mar 2022
Posts: 996
Own Kudos:
3,360
 [10]
Given Kudos: 116
Location: India
Concentration: Strategy
GMAT 1: 740 Q49 V42
GPA: 3.8
WE:Engineering (Energy)
9
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
General Discussion
User avatar
MacFauz
Joined: 02 Jul 2012
Last visit: 19 Mar 2022
Posts: 996
Own Kudos:
Given Kudos: 116
Location: India
Concentration: Strategy
GMAT 1: 740 Q49 V42
GPA: 3.8
WE:Engineering (Energy)
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
Two pieces of fruit are selected out of a group of 8 pieces of fruit consisting only of apples and bananas. What is the probability of selecting exactly 2 bananas?

Say there are \(x\) bananas and \(y\) (\(y=8-x\)) apples. The question is \(P(bb)=\frac{x}{8}*\frac{x-1}{7}=?\). Basically we need to find how many bananas are there.

(1) The probability of selecting exactly 2 apples is greater than 1/2 --> \(\frac{y}{8}*\frac{y-1}{7}>\frac{1}{2}\) --> \(y(y-1)>28\) --> \(y\) can be 6, 7, or 8, thus \(x\) can be 2, 1, or 0. not sufficient.

(2) The probability of selecting 1 apple and 1 banana in either order is greater than 1/3. \(2*\frac{x}{8}*\frac{8-x}{7}>\frac{1}{3}\) --> \(x(8-x)>\frac{28}{3}=9\frac{1}{3}\), thus \(x\) can be 2, 3, 4, 5, or 6. Not sufficient.

(1)+(2) From above x can only be 2. Sufficient.

Answer: C.

Hope it's clear.

Just concerned. When the question statement says that there are bananas AND apples, do we need to consider situations in which there are only apples or only bananas??? I'm asking this not for just this question but for the GMAT on the whole.
User avatar
th03
Joined: 02 Nov 2012
Last visit: 31 May 2014
Posts: 86
Own Kudos:
119
 [1]
Given Kudos: 35
Location: India
Concentration: Entrepreneurship, Strategy
WE:Other (Computer Software)
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
MacFauz
Bunuel
Two pieces of fruit are selected out of a group of 8 pieces of fruit consisting only of apples and bananas. What is the probability of selecting exactly 2 bananas?

Say there are \(x\) bananas and \(y\) (\(y=8-x\)) apples. The question is \(P(bb)=\frac{x}{8}*\frac{x-1}{7}=?\). Basically we need to find how many bananas are there.

(1) The probability of selecting exactly 2 apples is greater than 1/2 --> \(\frac{y}{8}*\frac{y-1}{7}>\frac{1}{2}\) --> \(y(y-1)>28\) --> \(y\) can be 6, 7, or 8, thus \(x\) can be 2, 1, or 0. not sufficient.

(2) The probability of selecting 1 apple and 1 banana in either order is greater than 1/3. \(2*\frac{x}{8}*\frac{8-x}{7}>\frac{1}{3}\) --> \(x(8-x)>\frac{28}{3}=9\frac{1}{3}\), thus \(x\) can be 2, 3, 4, 5, or 6. Not sufficient.

(1)+(2) From above x can only be 2. Sufficient.

Answer: C.

Hope it's clear.

Just concerned. When the question statement says that there are bananas AND apples, do we need to consider situations in which there are only apples or only bananas??? I'm asking this not for just this question but for the GMAT on the whole.

Choice (2) makes it clear that there is banana in the group of fruits, doesn't it? And yeah, it's always bad to assume ANYTHING on gmat, especially for Data Sufficiency and CR questions! So, when considering choice (1) by itself, no. of bananas=0 should also be one of the options.
User avatar
ziko
Joined: 28 Feb 2012
Last visit: 29 Jan 2014
Posts: 91
Own Kudos:
Given Kudos: 17
Concentration: Strategy, International Business
GPA: 3.9
WE:Marketing (Other)
Posts: 91
Kudos: 217
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
Two pieces of fruit are selected out of a group of 8 pieces of fruit consisting only of apples and bananas. What is the probability of selecting exactly 2 bananas?

Say there are \(x\) bananas and \(y\) (\(y=8-x\)) apples. The question is \(P(bb)=\frac{x}{8}*\frac{x-1}{7}=?\). Basically we need to find how many bananas are there.

(1) The probability of selecting exactly 2 apples is greater than 1/2 --> \(\frac{y}{8}*\frac{y-1}{7}>\frac{1}{2}\) --> \(y(y-1)>28\) --> \(y\) can be 6, 7, or 8, thus \(x\) can be 2, 1, or 0. not sufficient.

(2) The probability of selecting 1 apple and 1 banana in either order is greater than 1/3. \(2*\frac{x}{8}*\frac{8-x}{7}>\frac{1}{3}\) --> \(x(8-x)>\frac{28}{3}=9\frac{1}{3}\), thus \(x\) can be 2, 3, 4, 5, or 6. Not sufficient.

(1)+(2) From above x can only be 2. Sufficient.

Answer: C.

Hope it's clear.

I have solved this question with similar logic, but answered E because i understoon the 2nd statement as no matter what is the order the probability will be greater than 1/3, but in your solution i see that "in either order" means in both ways. Could you please clarify that?
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,394
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,394
Kudos: 778,403
Kudos
Add Kudos
Bookmarks
Bookmark this Post
ziko
Bunuel
Two pieces of fruit are selected out of a group of 8 pieces of fruit consisting only of apples and bananas. What is the probability of selecting exactly 2 bananas?

Say there are \(x\) bananas and \(y\) (\(y=8-x\)) apples. The question is \(P(bb)=\frac{x}{8}*\frac{x-1}{7}=?\). Basically we need to find how many bananas are there.

(1) The probability of selecting exactly 2 apples is greater than 1/2 --> \(\frac{y}{8}*\frac{y-1}{7}>\frac{1}{2}\) --> \(y(y-1)>28\) --> \(y\) can be 6, 7, or 8, thus \(x\) can be 2, 1, or 0. not sufficient.

(2) The probability of selecting 1 apple and 1 banana in either order is greater than 1/3. \(2*\frac{x}{8}*\frac{8-x}{7}>\frac{1}{3}\) --> \(x(8-x)>\frac{28}{3}=9\frac{1}{3}\), thus \(x\) can be 2, 3, 4, 5, or 6. Not sufficient.

(1)+(2) From above x can only be 2. Sufficient.

Answer: C.

Hope it's clear.

I have solved this question with similar logic, but answered E because i understoon the 2nd statement as no matter what is the order the probability will be greater than 1/3, but in your solution i see that "in either order" means in both ways. Could you please clarify that?

The probability of selecting 1 apple and 1 banana in either order equals to the probability of selecting an apple and then a banana (x/8*(8-x)/7) PLUS the probability of selecting a banana and then an apple ((x-8)/8*x/7) --> x/8*(8-x)/7+(8-x)/8*x/7=2*x/8*(8-x)/7.

Hope it's clear.
User avatar
fskilnik
Joined: 12 Oct 2010
Last visit: 03 Jan 2025
Posts: 885
Own Kudos:
Given Kudos: 57
Status:GMATH founder
Expert
Expert reply
Posts: 885
Kudos: 1,801
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Pansi
Two pieces of fruit are selected out of a group of 8 pieces of fruit consisting only of apples and bananas. What is the probability of selecting exactly 2 bananas?

(1) The probability of selecting exactly 2 apples is greater than 1/2.
(2) The probability of selecting 1 apple and 1 banana in either order is greater than 1/3.
\(2\,\,{\text{extractions}}\,\,{\text{from}}\,\,8\,\,\left\{ \begin{gathered}\\
\,{\text{apples}}\,\,\left( A \right) \hfill \\\\
\,{\text{bananas}}\,\,\left( {B = 8 - A} \right) \hfill \\ \\
\end{gathered} \right.\)

\(? = P\left( {{\text{both}}\,{\text{extractions}}\,\,{\text{bananas}}} \right)\)


\(\left( 1 \right)\,\,\,P\left( {{\text{both}}\,{\text{extractions}}\,\,{\text{apples}}} \right) = \frac{{C\left( {A,2} \right)}}{{C\left( {8,2} \right)}} > \frac{1}{2}\,\,\,\,\,\,\,\, \Rightarrow \,\,\,\,\,\,A\left( {A - 1} \right) > 28\,\,\,\,\,\,\, \Rightarrow \,\,\,\,\,\,A \geqslant 6\,\,\,\,\,\,\,\,\,\)

\(\left\{ {\begin{array}{*{20}{c}}\\
{{\text{If}}\,\,\left( {A,B} \right) = \left( {6,2} \right)} \\ \\
{{\text{If}}\,\,\left( {A,B} \right) = \left( {7,1} \right)} \\
\end{array}\begin{array}{*{20}{c}}\\
{\,\,\, \Rightarrow \,\,\,\,\,? = \frac{1}{{C\left( {8,2} \right)}} = \frac{1}{{28}}} \\ \\
{ \Rightarrow \,\,\,\,\,? = 0} \\
\end{array}\,\,\,\,} \right.\)


\(\left( 2 \right)\,\,\,P\left( {{\text{one}}\,\,{\text{each}}} \right) = \frac{{A \cdot \left( {8 - A} \right)}}{{C\left( {8,2} \right)}} > \frac{1}{3}\,\,\,\,\,\,\, \Rightarrow \,\,\,\,\,A\left( {8 - A} \right) > 9\frac{1}{3}\,\,\,\,\,\,\,\,\,\)

\(\left\{ \begin{gathered}\\
\,{\text{Retake}}\,\,\,\left( {A,B} \right) = \left( {6,2} \right)\,\,\,\,\,\, \Rightarrow \,\,\,\,\,\,\,? = \frac{1}{{C\left( {8,2} \right)}} = \frac{1}{{28}}\,\, \hfill \\\\
\,{\text{If}}\,\,\left( {A,B} \right) = \left( {5,3} \right)\,\,\,\,\,\, \Rightarrow \,\,\,\,\,\,\,? = \frac{{C\left( {3,2} \right)}}{{C\left( {8,2} \right)}} = \frac{3}{{28}}\,\,\, \hfill \\ \\
\end{gathered} \right.\,\,\)


\(\left( {1 + 2} \right)\,\,\,\left\{ \begin{gathered}\\
\,A \geqslant 6 \hfill \\\\
\,A\left( {8 - A} \right) > 9\frac{1}{3} \hfill \\ \\
\end{gathered} \right.\,\,\,\,\,\,\,\,\, \Rightarrow \,\,\,\,\,\,\,\,A = 6\,\,\,\,\,\,\,\, \Rightarrow \,\,\,\,\,\,\,\,{\text{SUFF}}.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left[ {\,?\,\, = \,\,\frac{1}{{C\left( {8,2} \right)}} = \frac{1}{{28}}\,} \right]\)


This solution follows the notations and rationale taught in the GMATH method.

Regards,
Fabio.
User avatar
bumpbot
User avatar
Non-Human User
Joined: 09 Sep 2013
Last visit: 04 Jan 2021
Posts: 38,591
Own Kudos:
Posts: 38,591
Kudos: 1,079
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
Moderators:
Math Expert
105393 posts
496 posts