Bunuel
What is the equation where roots are \((2α + \frac{1}{β})\) and \((2β + \frac{1}{α})\), if α and β are roots of \(2x^2 - 3x -5 = 0\)?
A. \(5x^2 - 12x - 32 = 0\)
B. \(5x^2 - 12x + 32 = 0\)
C. \(5x^2 + 12x - 32 = 0\)
D. \(5x^2 + 12x + 32 = 0\)
E. \(5x^2 - 12x - 16 = 0\)
Solution: - α and β are roots of \(2x^2 - 3x -5 = 0\)
- This means \(α+β=-(\frac{-3}{2})=\frac{3}{2}\) and \(αβ=-\frac{5}{2}\)
- Equation with given roots is \(x^2-Sx+P=0\) where S is sum of the roots and P is the product
- Therefore, equation with roots \((2α + \frac{1}{β})\) and \((2β + \frac{1}{α})\) is \(x^2-(2α + \frac{1}{β}+2β + \frac{1}{α})x+(2α + \frac{1}{β})(2β + \frac{1}{α})=0\)
\(⇒x^2-(2(α+β)+\frac{1}{α}+\frac{1}{β})x+(4αβ+2+2+\frac{1}{αβ})=0\)
\(⇒x^2-(2\times \frac{3}{2}+\frac{α+β}{αβ})x+(4\times \frac{-5}{2}+4+\frac{1}{\frac{-5}{2}})=0\)
\(⇒x^2-(3+\frac{\frac{3}{2}}{\frac{-5}{2}})x+(-10+4-\frac{2}{5})=0\)
\(⇒x^2-(3-\frac{3}{5})x+(-6-\frac{2}{5})=0\)
\(⇒x^2-\frac{12x}{5}-\frac{32}{5}=0\)
\(⇒5x^2-12x-32=0\)
Hence the right answer is
Option A