Last visit was: 19 Nov 2025, 15:15 It is currently 19 Nov 2025, 15:15
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
carcass
User avatar
Board of Directors
Joined: 01 Sep 2010
Last visit: 17 Nov 2025
Posts: 4,754
Own Kudos:
Given Kudos: 4,856
Posts: 4,754
Kudos: 37,015
 [148]
12
Kudos
Add Kudos
135
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,364
 [88]
36
Kudos
Add Kudos
51
Bookmarks
Bookmark this Post
General Discussion
User avatar
fameatop
Joined: 24 Aug 2009
Last visit: 09 Jun 2017
Posts: 383
Own Kudos:
2,495
 [4]
Given Kudos: 275
Concentration: Finance
Schools:Harvard, Columbia, Stern, Booth, LSB,
Posts: 383
Kudos: 2,495
 [4]
3
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
avatar
caioguima
Joined: 02 Jan 2013
Last visit: 07 Jul 2021
Posts: 35
Own Kudos:
172
 [2]
Given Kudos: 2
GMAT 1: 750 Q51 V40
GPA: 3.2
WE:Consulting (Consulting)
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
In order for |x - 1| to be equal to 1 - x, we would have to have x < 1 . Therefore eliminating your second pair of solutions

You could also verify this by substituting x = 4 inthe original equation, and seeing that this solution DOES NOT fit. The only two solutions are 1 and 2.

ANS: no correct option available
Posted from my mobile device
User avatar
geometric
Joined: 13 Jan 2012
Last visit: 15 Feb 2017
Posts: 244
Own Kudos:
891
 [2]
Given Kudos: 38
Weight: 170lbs
GMAT 1: 740 Q48 V42
GMAT 2: 760 Q50 V42
WE:Analyst (Other)
GMAT 2: 760 Q50 V42
Posts: 244
Kudos: 891
 [2]
1
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
Bunuel
carcass
What is the product of all the solutions of x^2 - 4x + 6 = 3 - |x - 1| ?

(A) -8
(B) -4
(C) -2
(D) 4
(E) 8

If \(x<1\), then \(|x - 1| = -(x-1)=1-x\), so in this case we'll have \(x^2 - 4x + 6 = 3-(1-x)\) --> \(x^2-5x+4=0\) --> \(x=1\) or \(x=4\) --> discard both solutions since neither is in the range \(x<1\).

If \(x\geq{1}\), then \(|x - 1| = x-1\), so in this case we'll have \(x^2 - 4x + 6 = 3-(x-1)\) --> \(x^2-3x+2=0\) --> \(x=1\) or \(x=2\).

Therefore, the product of the roots is 1*2=2.

No correct answer among the choices.

Wow! Really? How often do we see this? Who the heck wrote this question?
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
778,364
 [1]
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,364
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
vandygrad11
Bunuel
carcass
What is the product of all the solutions of x^2 - 4x + 6 = 3 - |x - 1| ?

(A) -8
(B) -4
(C) -2
(D) 4
(E) 8

If \(x<1\), then \(|x - 1| = -(x-1)=1-x\), so in this case we'll have \(x^2 - 4x + 6 = 3-(1-x)\) --> \(x^2-5x+4=0\) --> \(x=1\) or \(x=4\) --> discard both solutions since neither is in the range \(x<1\).

If \(x\geq{1}\), then \(|x - 1| = x-1\), so in this case we'll have \(x^2 - 4x + 6 = 3-(x-1)\) --> \(x^2-3x+2=0\) --> \(x=1\) or \(x=2\).

Therefore, the product of the roots is 1*2=2.

No correct answer among the choices.

Wow! Really? How often do we see this? Who the heck wrote this question?

How often do we see what?

I've seen similar question which reads:
What is the product of all the solutions of x^2 + 4x + 7 = |x + 2| + 3 ?
A. -6
B. -2
C. 2
D. 6
E. 12

OA:
Try it. I'll provide solution for this question later, if necessary.
User avatar
geometric
Joined: 13 Jan 2012
Last visit: 15 Feb 2017
Posts: 244
Own Kudos:
Given Kudos: 38
Weight: 170lbs
GMAT 1: 740 Q48 V42
GMAT 2: 760 Q50 V42
WE:Analyst (Other)
GMAT 2: 760 Q50 V42
Posts: 244
Kudos: 891
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel


How often do we see what?

I've seen similar question which reads:
What is the product of all the solutions of x^2 + 4x + 7 = |x + 2| + 3 ?
A. -6
B. -2
C. 2
D. 6
E. 12

OA:
Try it. I'll provide solution for this question later, if necessary.

How often do we see no correct answer among the answer choices?
User avatar
davidfrank
Joined: 21 Jun 2011
Last visit: 18 Sep 2021
Posts: 46
Own Kudos:
Given Kudos: 15
Location: United States
Concentration: Accounting, Finance
WE:Accounting (Accounting)
Posts: 46
Kudos: 118
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
carcass
What is the product of all the solutions of x^2 - 4x + 6 = 3 - |x - 1| ?

(A) -8
(B) -4
(C) -2
(D) 4
(E) 8

If \(x<1\), then \(|x - 1| = -(x-1)=1-x\), so in this case we'll have \(x^2 - 4x + 6 = 3-(1-x)\) --> \(x^2-5x+4=0\) --> \(x=1\) or \(x=4\) --> discard both solutions since neither is in the range \(x<1\).

If \(x\geq{1}\), then \(|x - 1| = x-1\), so in this case we'll have \(x^2 - 4x + 6 = 3-(x-1)\) --> \(x^2-3x+2=0\) --> \(x=1\) or \(x=2\).

Therefore, the product of the roots is 1*2=2.

No correct answer among the choices.
I have a question, I do understand that why have you taken the value 1 but I don't understand why have you taken x>=1. Why not simply x>1
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
778,364
 [2]
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,364
 [2]
1
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
davidfrank
Bunuel
carcass
What is the product of all the solutions of x^2 - 4x + 6 = 3 - |x - 1| ?

(A) -8
(B) -4
(C) -2
(D) 4
(E) 8

If \(x<1\), then \(|x - 1| = -(x-1)=1-x\), so in this case we'll have \(x^2 - 4x + 6 = 3-(1-x)\) --> \(x^2-5x+4=0\) --> \(x=1\) or \(x=4\) --> discard both solutions since neither is in the range \(x<1\).

If \(x\geq{1}\), then \(|x - 1| = x-1\), so in this case we'll have \(x^2 - 4x + 6 = 3-(x-1)\) --> \(x^2-3x+2=0\) --> \(x=1\) or \(x=2\).

Therefore, the product of the roots is 1*2=2.

No correct answer among the choices.
I have a question, I do understand that why have you taken the value 1 but I don't understand why have you taken x>=1. Why not simply x>1

x could be 1, thus when you consider the ranges you should include this value in either of the range, so we could consider x<1 and x>=1 OR x<=1 and x>1 (you cam include = sign in either of the ranges).

Hope it's clear.
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,364
Kudos
Add Kudos
Bookmarks
Bookmark this Post
vandygrad11
Bunuel


How often do we see what?

I've seen similar question which reads:
What is the product of all the solutions of x^2 + 4x + 7 = |x + 2| + 3 ?
A. -6
B. -2
C. 2
D. 6
E. 12

OA:
Try it. I'll provide solution for this question later, if necessary.

How often do we see no correct answer among the answer choices?

Never, if it's a proper GMAT question.
User avatar
guerrero25
Joined: 10 Apr 2012
Last visit: 13 Nov 2019
Posts: 244
Own Kudos:
5,062
 [2]
Given Kudos: 325
Location: United States
Concentration: Technology, Other
GPA: 2.44
WE:Project Management (Telecommunications)
Posts: 244
Kudos: 5,062
 [2]
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
I've seen similar question which reads:
What is the product of all the solutions of x^2 + 4x + 7 = |x + 2| + 3 ?
A. -6
B. -2
C. 2
D. 6
E. 12

OA:
Try it. I'll provide solution for this question later, if necessary.[/quote]


if |x+2|>=0 then |x+2|= (x+2)

eqation becomes (x+2)(x+1)=0

x=-2,-1

if |x+2|<0 then |x+2|=-(x+2)

equation becomes (x+2) (x+3) =0
x=-2,-3 ( can't be -2 since x<-2)

product of the solution -

-2*-1*-3= -6 Ans
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
778,364
 [1]
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,364
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
guerrero25
I've seen similar question which reads:
What is the product of all the solutions of x^2 + 4x + 7 = |x + 2| + 3 ?
A. -6
B. -2
C. 2
D. 6
E. 12

OA:
Try it. I'll provide solution for this question later, if necessary.

if |x+2|>=-2 then |x+2|= (x+2)

eqation becomes (x+2)(x+1)=0

x=-2,-1

if |x+2|<-2 then |x+2|=-(x+2)

equation becomes (x+2) (x+3) =0
x=-2,-3 ( can't be -2 since x<-2)

product of the solution -

-2*-1*-3= -6 Ans

I guess you meant the following:

When \(x\leq{-2}\), then \(|x+2|=-(x-2)\).
When \(x>{-2}\), then \(|x+2|=(x-2)\).

Complete solution:

\(x^2 + 4x + 7 = |x + 2| + 3\) --> \(x^2 + 4x + 4 = |x + 2|\) --> \((x+2)^2=|x+2|\) --> \((x+2)^4=(x+2)^2\) --> \((x+2)^2((x+2)^2-1)=0\):

\(x+2=0\) --> \(x=-2\);
OR
\((x+2)^2-1=0\) --> \((x+2)^2=1\) --> \(x=-1\) or \(x=-3\).

The product of the roots: \((-2)*(-1)*(-3)=-6\).

Answer: A.

Hope it's clear.
User avatar
guerrero25
Joined: 10 Apr 2012
Last visit: 13 Nov 2019
Posts: 244
Own Kudos:
5,062
 [1]
Given Kudos: 325
Location: United States
Concentration: Technology, Other
GPA: 2.44
WE:Project Management (Telecommunications)
Posts: 244
Kudos: 5,062
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
guerrero25
I've seen similar question which reads:
What is the product of all the solutions of x^2 + 4x + 7 = |x + 2| + 3 ?
A. -6
B. -2
C. 2
D. 6
E. 12

OA:
Try it. I'll provide solution for this question later, if necessary.

if |x+2|>=-2 then |x+2|= (x+2)

eqation becomes (x+2)(x+1)=0

x=-2,-1

if |x+2|<-2 then |x+2|=-(x+2)

equation becomes (x+2) (x+3) =0
x=-2,-3 ( can't be -2 since x<-2)

product of the solution -

-2*-1*-3= -6 Ans

I guess you meant the following:

When \(x\leq{-2}\), then \(|x+2|=-(x-2)\).
When \(x>{-2}\), then \(|x+2|=(x-2)\).

Complete solution:

\(x^2 + 4x + 7 = |x + 2| + 3\) --> \(x^2 + 4x + 4 = |x + 2|\) --> \((x+2)^2=|x+2|\) --> \((x+2)^4=(x+2)^2\) --> \((x+2)^2((x+2)^2-1)=0\):

\(x+2=0\) --> \(x=-2\);
OR
\((x+2)^2-1=0\) --> \((x+2)^2=1\) --> \(x=-1\) or \(x=-3\).

The product of the roots: \((-2)*(-1)*(-3)=-6\).

Answer: A.

Hope it's clear.

thanks ! That was a Typo . I edited the post .
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
778,364
 [1]
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,364
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
guerrero25
I've seen similar question which reads:
What is the product of all the solutions of x^2 + 4x + 7 = |x + 2| + 3 ?
A. -6
B. -2
C. 2
D. 6
E. 12

OA:
Try it. I'll provide solution for this question later, if necessary.


if |x+2|>=0 then |x+2|= (x+2)

eqation becomes (x+2)(x+1)=0

x=-2,-1

if |x+2|<0 then |x+2|=-(x+2)

equation becomes (x+2) (x+3) =0
x=-2,-3 ( can't be -2 since x<-2)

product of the solution -

-2*-1*-3= -6 Ans[/quote]

Still not correct. Absolute value cannot be negative, so |x+2| is always more than or equal to zero.
avatar
jjack0310
Joined: 04 May 2013
Last visit: 06 Jan 2014
Posts: 32
Own Kudos:
Given Kudos: 7
Posts: 32
Kudos: 25
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
guerrero25
I've seen similar question which reads:
What is the product of all the solutions of x^2 + 4x + 7 = |x + 2| + 3 ?
A. -6
B. -2
C. 2
D. 6
E. 12

OA:
Try it. I'll provide solution for this question later, if necessary.

if |x+2|>=-2 then |x+2|= (x+2)

eqation becomes (x+2)(x+1)=0

x=-2,-1

if |x+2|<-2 then |x+2|=-(x+2)

equation becomes (x+2) (x+3) =0
x=-2,-3 ( can't be -2 since x<-2)

product of the solution -

-2*-1*-3= -6 Ans

I guess you meant the following:

When \(x\leq{-2}\), then \(|x+2|=-(x-2)\).
When \(x>{-2}\), then \(|x+2|=(x-2)\).

Complete solution:

\(x^2 + 4x + 7 = |x + 2| + 3\) --> \(x^2 + 4x + 4 = |x + 2|\) --> \((x+2)^2=|x+2|\) --> \((x+2)^4=(x+2)^2\) --> \((x+2)^2((x+2)^2-1)=0\):

\(x+2=0\) --> \(x=-2\);
OR
\((x+2)^2-1=0\) --> \((x+2)^2=1\) --> \(x=-1\) or \(x=-3\).

The product of the roots: \((-2)*(-1)*(-3)=-6\).

Answer: A.

Hope it's clear.


Bunuel,
Can you solve this problem using the other method that you used in the previous problem?

I mean:

If
x >= 0, |x + 2| = x + 2.
This would give the equation: x^2 + 4x + 7 = x + 5.
Roots are -2, and -1

what is the other scenario?
What happens if x < 0?

How do we end up with the roots -3, and -1??
Thaanks
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
778,364
 [1]
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,364
 [1]
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
jjack0310
Bunuel
guerrero25
I've seen similar question which reads:
What is the product of all the solutions of x^2 + 4x + 7 = |x + 2| + 3 ?
A. -6
B. -2
C. 2
D. 6
E. 12

OA:
Try it. I'll provide solution for this question later, if necessary.

if |x+2|>=-2 then |x+2|= (x+2)

eqation becomes (x+2)(x+1)=0

x=-2,-1

if |x+2|<-2 then |x+2|=-(x+2)

equation becomes (x+2) (x+3) =0
x=-2,-3 ( can't be -2 since x<-2)

product of the solution -

-2*-1*-3= -6 Ans

I guess you meant the following:

When \(x\leq{-2}\), then \(|x+2|=-(x-2)\).
When \(x>{-2}\), then \(|x+2|=(x-2)\).

Complete solution:

\(x^2 + 4x + 7 = |x + 2| + 3\) --> \(x^2 + 4x + 4 = |x + 2|\) --> \((x+2)^2=|x+2|\) --> \((x+2)^4=(x+2)^2\) --> \((x+2)^2((x+2)^2-1)=0\):

\(x+2=0\) --> \(x=-2\);
OR
\((x+2)^2-1=0\) --> \((x+2)^2=1\) --> \(x=-1\) or \(x=-3\).

The product of the roots: \((-2)*(-1)*(-3)=-6\).

Answer: A.

Hope it's clear.


Bunuel,
Can you solve this problem using the other method that you used in the previous problem?

I mean:

If
x >= 0, |x + 2| = x + 2.
This would give the equation: x^2 + 4x + 7 = x + 5.
Roots are -2, and -1

what is the other scenario?
What happens if x < 0?

How do we end up with the roots -3, and -1??
Thaanks

When \(x\leq{-2}\), then \(|x+2|=-(x-2)\). So, in this case we'll have \(x^2 + 4x + 7 =-(x + 2) + 3\) --> \(x=-3\) or \(x=-2\). Both solutions are valid.

When \(x>{-2}\), then \(|x+2|=(x-2)\). So, in this case we'll have \(x^2 + 4x + 7 =(x + 2) + 3\) --> \(x=-2\) or \(x=-1\). The first solution is not valid since it's out of the range we consider. The second one is OK.

So, there are 3 valid solutions: \(x=-3\), \(x=-2\) and \(x=-1\).

Hope it's clear.
avatar
jjack0310
Joined: 04 May 2013
Last visit: 06 Jan 2014
Posts: 32
Own Kudos:
Given Kudos: 7
Posts: 32
Kudos: 25
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Sorry. It is not clear.

Can you explain what was wrong with the way I was approaching the problem?

I mean other than the part that you marked red, what was I doing wrong? Do I have to solve theproblem using the solution that you mentioned?

If x > -2, how is |x + 2| = (x - 2)?
Is there an identity that I am missing?
If I plug in, X = -1, |x + 2| = 1, but (x - 2) = -3

Why the discrepancy? What identity am I missing?
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,364
Kudos
Add Kudos
Bookmarks
Bookmark this Post
jjack0310
Sorry. It is not clear.

Can you explain what was wrong with the way I was approaching the problem?

I mean other than the part that you marked red, what was I doing wrong? Do I have to solve theproblem using the solution that you mentioned?

If x > -2, how is |x + 2| = (x - 2)?
Is there an identity that I am missing?
If I plug in, X = -1, |x + 2| = 1, but (x - 2) = -3

Why the discrepancy? What identity am I missing?

There was a typo:
When \(x\leq{-2}\), then \(|x+2|=-(x+2)\)
When \(x>{-2}\), then \(|x+2|=(x+2)\).

Absolute value properties:

When \(x\leq {0}\) then \(|x|=-x\), or more generally when \(some \ expression\leq{0}\) then \(|some \ expression|={-(some \ expression)}\). For example: \(|-5|=5=-(-5)\);

When \(x \geq {0}\) then \(|x|=x\), or more generally when \(some \ expression\geq{0}\) then \(|some \ expression|={some \ expression}\). For example: \(|5|=5\).

For our question, when x>-2 (when x+2>0), |x+2|=x+2.

Hope it's clear.
avatar
jjack0310
Joined: 04 May 2013
Last visit: 06 Jan 2014
Posts: 32
Own Kudos:
Given Kudos: 7
Posts: 32
Kudos: 25
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
jjack0310
Sorry. It is not clear.

Can you explain what was wrong with the way I was approaching the problem?

I mean other than the part that you marked red, what was I doing wrong? Do I have to solve theproblem using the solution that you mentioned?

If x > -2, how is |x + 2| = (x - 2)?
Is there an identity that I am missing?
If I plug in, X = -1, |x + 2| = 1, but (x - 2) = -3

Why the discrepancy? What identity am I missing?

There was a typo:
When \(x\leq{-2}\), then \(|x+2|=-(x+2)\)
When \(x>{-2}\), then \(|x+2|=(x+2)\).

Absolute value properties:

When \(x\leq{0}\) then \(|x|=-x\), or more generally when \(some \ expression\leq{0}\) then \(|some \ expression|={-(some \ expression)}\). For example: \(|-5|=5=-(-5)\);

When \(x\geq{0}\) then \(|x|=x\), or more generally when \(some \ expression\geq{0}\) then \(|some \ expression|={some \ expression}\). For example: \(|5|=5\).

For our question, when x>-2 (when x+2>0), |x+2|=x+2.

Hope it's clear.

Got it.

Thanks,

Final question, why are there two possibilities for when x = 0? Is that correct? or a typo?
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,364
Kudos
Add Kudos
Bookmarks
Bookmark this Post
jjack0310
Bunuel
jjack0310
Sorry. It is not clear.

Can you explain what was wrong with the way I was approaching the problem?

I mean other than the part that you marked red, what was I doing wrong? Do I have to solve theproblem using the solution that you mentioned?

If x > -2, how is |x + 2| = (x - 2)?
Is there an identity that I am missing?
If I plug in, X = -1, |x + 2| = 1, but (x - 2) = -3

Why the discrepancy? What identity am I missing?

There was a typo:
When \(x\leq{-2}\), then \(|x+2|=-(x+2)\)
When \(x>{-2}\), then \(|x+2|=(x+2)\).

Absolute value properties:

When \(x\leq{0}\) then \(|x|=-x\), or more generally when \(some \ expression\leq{0}\) then \(|some \ expression|={-(some \ expression)}\). For example: \(|-5|=5=-(-5)\);

When \(x\geq{0}\) then \(|x|=x\), or more generally when \(some \ expression\geq{0}\) then \(|some \ expression|={some \ expression}\). For example: \(|5|=5\).

For our question, when x>-2 (when x+2>0), |x+2|=x+2.

Hope it's clear.

Got it.

Thanks,

Final question, why are there two possibilities for when x = 0? Is that correct? or a typo?

No, that's not a typo: |0|=0=-0.
 1   2   
Moderators:
Math Expert
105390 posts
Tuck School Moderator
805 posts