We need to simplify \(\frac{7\sqrt{3}}{\sqrt{10} + \sqrt{3}}-\frac{2\sqrt{5}}{\sqrt{6} + \sqrt{5}}-\frac{3\sqrt{2}}{\sqrt{15} + 3\sqrt{2}}\)We will be using a concept called as Rationalizing Roots, we will multiply the numerator and the denominator with the conjugate of the denominatorConjugate of \( \sqrt{10} + \sqrt{3} \) = \( \sqrt{10} - \sqrt{3} \)
Conjugate of \( \sqrt{6} + \sqrt{5} \) = \( \sqrt{6} - \sqrt{5} \)
Conjugate of \( \sqrt{15} + 3\sqrt{2} \) = \( \sqrt{15} - 3\sqrt{2} \)
=> \( \frac{7\sqrt{3}}{\sqrt{10} + \sqrt{3}} * \frac{\sqrt{10} - \sqrt{3}}{\sqrt{10} - \sqrt{3}} - \frac{2\sqrt{5}}{\sqrt{6} + \sqrt{5}} * \frac{\sqrt{6} - \sqrt{5}}{ \sqrt{6} - \sqrt{5}} - \frac{3\sqrt{2}}{\sqrt{15} + 3\sqrt{2}} * \frac{\sqrt{15} - 3\sqrt{2}}{\sqrt{15} - 3\sqrt{2}} \)
Now, in each of the terms in the denominator we have (a+b) * (a-b) = \(a^2 - b^2\)
=> \(\frac{7\sqrt{3} * (\sqrt{10} - \sqrt{3})}{(\sqrt{10})^2 - (\sqrt{3})^2} - \frac{2\sqrt{5} * ( \sqrt{6} - \sqrt{5})}{(\sqrt{6})^2 - (\sqrt{5})^2} - \frac{3\sqrt{2} * ( \sqrt{15} - 3\sqrt{2} )}{(\sqrt{15})^2 - (3\sqrt{2})^2}\)
=> \( \frac{7 (\sqrt{3*10} - \sqrt{3^2})}{10 - 3} - \frac{(2\sqrt{5*6} - 2 \sqrt{5*5})}{6 - 5} - \frac{3(\sqrt{2*15} - 3\sqrt{2*2})}{15 - 9*2}\)
=> \( \frac{7 (\sqrt{30} - 3)}{7} - \frac{(2\sqrt{30} - 2*5)}{1} - \frac{3(\sqrt{30} - 3*2)}{15 - 18}\)
=> \((\sqrt{30} - 3) - (2\sqrt{30} - 10 ) - \frac{3(\sqrt{30} - 6)}{-3}\)
=> \(\sqrt{30} - 3 - 2\sqrt{30} + 10 + \sqrt{30} - 6\)
=> 10 - 9 = 1
So,
Answer will be BHope it helps!
Playlist on Solved Problems on Roots hereWatch the following video to MASTER Rationalizing Roots