GMAT Question of the Day - Daily to your Mailbox; hard ones only

 It is currently 22 May 2019, 03:06 ### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

#### Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here. ### Request Expert Reply # When positive integer x is divided by positive integer y, the result

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics
Author Message
TAGS:

### Hide Tags

Intern  Joined: 06 Jun 2014
Posts: 45
When positive integer x is divided by positive integer y, the result  [#permalink]

### Show Tags

4
15 00:00

Difficulty:

(N/A)

Question Stats: 36% (02:41) correct 64% (02:40) wrong based on 180 sessions

### HideShow timer Statistics

When positive integer x is divided by positive integer y, the result is the number a.bc, where a, b, and c each represent unique digits. If the remainder when xis divided by y is 1, which of the following must be true?

I. b < 6
II. y < x
III. y does not equal 3

A. II only
B. I and II only
C. II and III only
D. I and III only
E. I, II and III

I do not understand the OA, this is the OA

EDITED THE OA
All three statements must be true, and can be determined using a thorough understanding of quotient and remainder in division operations. For statement I,
b<6, consider the role that
b plays in the decimal a.bc. The decimal places .bc are calculated by taking the remainder of 1 and dividing by the divisor of
y. And in that decimal,
b will tell you whether you'd round up to the nearest integer or down to the nearest integer. So if
b is 6 or greater, that means that the calculation of 1 divided by
y is greater than 1/2. But it can't be, because the only thing smaller than 2 for y to be is 1, in which case there would be no remainder. So the greatest that
b can be is 5, in the event that y=2
For statement II, again consider that remainder of 1. If the divisor is ever greater than the dividend (when dealing with positive values) - which, in fraction form, means that the denominator is greater than the numerator - then the dividend/numerator is equal to the remainder. (Consider such a case: when 3 is divided by 4, 3 doesn't go in to 4 so all of 3 is "left over" as the remainder.) So if
y were less than x, then all of
x would be have to be the remainder. But that would make
x=1, which cannot work because both
x and y have to be positive integers, and 1 is the smallest positive integer. So there is no combination here that would allow for x=1 and y>x
Therefore y must be less than x, proving this statement true.
For statement 3, look again at how the decimal points are created: by taking the remainder of 1 and dividing by
y. If y were 3, then you would have a repeating decimal and not the two-place decimal of .bc. So this statement must be true; y cannot equal 3.

Originally posted by kzivrev on 16 Sep 2016, 15:35.
Last edited by abhimahna on 20 Sep 2016, 01:09, edited 2 times in total.
Edited the OA.
##### Most Helpful Community Reply
Senior Manager  B
Joined: 13 Oct 2016
Posts: 367
GPA: 3.98
Re: When positive integer x is divided by positive integer y, the result  [#permalink]

### Show Tags

2
3
kzivrev wrote:
When positive integer x is divided by positive integer y, the result is the number a.bc, where a, b, and c each represent unique digits. If the remainder when xis divided by y is 1, which of the following must be true?

I. b < 6
II. y < x
III. y does not equal 3

A. II only
B. I and II only
C. II and III only
D. I and III only
E. I, II and III

I do not understand the OA, this is the OA

.[/spoiler]

Slightly different approach.

$$\frac{1}{y} = \frac{bc}{100}$$

$$y = \frac{100}{bc}$$

$$bc$$ should be a two digit factor of 100, where b and c are distinct "non zero" digits. The only factor that satisfies above criteria is 25. So our b=2 and c=5.

Back to options:

I. Yes.

II. Not always ----> 1/4 = 0.25

III. Yes, because y should be a factor of $$100 = 2^2*5^2$$, which corresponds to the fact that we have terminating decimal ($$y = 2^a*5^b$$).

Hence D.
##### General Discussion
Senior Manager  Joined: 23 Apr 2015
Posts: 299
Location: United States
Concentration: General Management, International Business
WE: Engineering (Consulting)
Re: When positive integer x is divided by positive integer y, the result  [#permalink]

### Show Tags

1
3
kzivrev wrote:
When positive integer x is divided by positive integer y, the result is the number a.bc, where a,b, and c each represent unique digits. If the remainder when xis divided by y is 1,which of the following must be true?
I. b<6
II. y<x
III. Y does not equal 3

A. II only
B. I and II only
C. II and III only
D. I and III onl
E. I , II and III

Given $$\frac{x}{y} = a.bc and also \frac{(x-1)}{y} = a$$
this means $$y * .bc = 1$$
Now Consider I) b<6,
look at second equation $$y * .bc = 1$$ if b >5 then the result will be greater than 1.
Consider II) $$y<x$$
Since $$x$$ and $$y$$ are positive and $$\frac{x}{y}$$ gives a quotient and remainder, $$x$$ has to be greater than $$y$$.
Consider III) $$Y$$ does not equal 3
if $$Y$$ is equal to 3, then the bc will not be a terminating decimal.

Hence I, II and III all satisfies the statement. Answer is E
Intern  B
Joined: 01 Nov 2015
Posts: 20
Re: When positive integer x is divided by positive integer y, the result  [#permalink]

### Show Tags

I have a doubt with regard to Statement 2 : What if x/y equals 1/4. The remainder is 1 and 1/4 equals 0.25 where a=0, b=2 and c=5. This also satisfies the requirement that a, b, and c represent unique digits.
Intern  Joined: 24 May 2016
Posts: 1
Re: When positive integer x is divided by positive integer y, the result  [#permalink]

### Show Tags

aayushagrawal wrote:
I have a doubt with regard to Statement 2 : What if x/y equals 1/4. The remainder is 1 and 1/4 equals 0.25 where a=0, b=2 and c=5. This also satisfies the requirement that a, b, and c represent unique digits.

I'm currently confused about this as well as it seems a valid answer given all the variables are unique and the remainder is 1. Pretty sure there is an error here. Went with D.

Edit: To be fair to the poster above, the answer they give in Veritas is E.

Originally posted by msandman on 17 Sep 2016, 00:18.
Last edited by msandman on 17 Sep 2016, 12:57, edited 1 time in total.
Board of Directors V
Status: Stepping into my 10 years long dream
Joined: 18 Jul 2015
Posts: 3630
Re: When positive integer x is divided by positive integer y, the result  [#permalink]

### Show Tags

Senthil1981 wrote:
kzivrev wrote:
When positive integer x is divided by positive integer y, the result is the number a.bc, where a,b, and c each represent unique digits. If the remainder when xis divided by y is 1,which of the following must be true?
I. b<6
II. y<x
III. Y does not equal 3

A. II only
B. I and II only
C. II and III only
D. I and III onl
E. I , II and III

Given $$\frac{x}{y} = a.bc and also \frac{(x-1)}{y} = a$$
this means $$y * .bc = 1$$
Now Consider I) b<6,
look at second equation $$y * .bc = 1$$ if b >5 then the result will be greater than 1.
Consider II) $$y<x$$
Since $$x$$ and $$y$$ are positive and $$\frac{x}{y}$$ gives a quotient and remainder, $$x$$ has to be greater than $$y$$.
Consider III) $$Y$$ does not equal 3
if $$Y$$ is equal to 3, then the bc will not be a terminating decimal.

Hence I, II and III all satisfies the statement. Answer is E

Dude, don't you think you have missed something in the highlighted statement above. We could have x = 1 and y =4, result 0.25, which satisfies all the conditions given in the question.

I am with D and not E.
_________________
My GMAT Story: From V21 to V40
My MBA Journey: My 10 years long MBA Dream
My Secret Hacks: Best way to use GMATClub | Importance of an Error Log!
Verbal Resources: All SC Resources at one place | All CR Resources at one place

GMAT Club Inbuilt Error Log Functionality - View More.
New Visa Forum - Ask all your Visa Related Questions - here.
New! Best Reply Functionality on GMAT Club!
Find a bug in the new email templates and get rewarded with 2 weeks of GMATClub Tests for free
Check our new About Us Page here.
Intern  Joined: 04 May 2016
Posts: 5
Re: When positive integer x is divided by positive integer y, the result  [#permalink]

### Show Tags

Took the Veritas test today and selected D for this question. Pretty sure the answer is D and not E.
Veritas Prep Representative S
Joined: 26 Jul 2010
Posts: 398
Re: When positive integer x is divided by positive integer y, the result  [#permalink]

### Show Tags

Top Contributor
Hey everyone,

As the author of the question here, I should chime in - I apologize! I put this one into an experimental slot of the practice tests before the weekend (it's Monday now) because I've seen a lot of students struggling lately with abstract Quotient/Remainder problems, and amidst all the time I spent making sure that variables, fractions, etc. were all formatted properly...I missed the fact that it should have said "nonzero" in "a, b,c and c each represent unique, NONZERO digits" (so that II would be kind of a freebie with the other two statements being trickier). So I apologize - of course, as it's written earlier in this thread, the answer is D and not E.

To anyone who saw this on a practice test, much like GMAC we use experimental positions to pre-test practice questions so this one wouldn't have counted toward your score. And the data is very helpful - with about 100 responses over the weekend I could quickly tell when I got to my desk this morning that something wasn't right, since 700+ scorers were getting it right less often than the left-hand side of the curve was.

Sorry for the confusion - great analysis above!
_________________
Brian

Curriculum Developer, Instructor, and Host of Veritas Prep On Demand

Save \$100 on live Veritas Prep GMAT Courses and Admissions Consulting

Enroll now. Pay later. Take advantage of Veritas Prep's flexible payment plan options.

Veritas Prep Reviews
Current Student B
Joined: 09 Mar 2014
Posts: 16
Re: When positive integer x is divided by positive integer y, the result  [#permalink]

### Show Tags

1
kzivrev wrote:
When positive integer x is divided by positive integer y, the result is the number a.bc, where a, b, and c each represent unique digits. If the remainder when xis divided by y is 1, which of the following must be true?

I. b < 6
II. y < x
III. y does not equal 3

A. II only
B. I and II only
C. II and III only
D. I and III only
E. I, II and III

I do not understand the OA, this is the OA

EDITED THE OA
All three statements must be true, and can be determined using a thorough understanding of quotient and remainder in division operations. For statement I,
b<6, consider the role that
b plays in the decimal a.bc. The decimal places .bc are calculated by taking the remainder of 1 and dividing by the divisor of
y. And in that decimal,
b will tell you whether you'd round up to the nearest integer or down to the nearest integer. So if
b is 6 or greater, that means that the calculation of 1 divided by
y is greater than 1/2. But it can't be, because the only thing smaller than 2 for y to be is 1, in which case there would be no remainder. So the greatest that
b can be is 5, in the event that y=2
For statement II, again consider that remainder of 1. If the divisor is ever greater than the dividend (when dealing with positive values) - which, in fraction form, means that the denominator is greater than the numerator - then the dividend/numerator is equal to the remainder. (Consider such a case: when 3 is divided by 4, 3 doesn't go in to 4 so all of 3 is "left over" as the remainder.) So if
y were less than x, then all of
x would be have to be the remainder. But that would make
x=1, which cannot work because both
x and y have to be positive integers, and 1 is the smallest positive integer. So there is no combination here that would allow for x=1 and y>x
Therefore y must be less than x, proving this statement true.
For statement 3, look again at how the decimal points are created: by taking the remainder of 1 and dividing by
y. If y were 3, then you would have a repeating decimal and not the two-place decimal of .bc. So this statement must be true; y cannot equal 3.

Is this official explanation? I think the question is not air tight, and quite confusing...

I use elimination for this question. Since II is obviously not "must be true" (with x=1 and y=4), all answers with II must be wrong, hence D is the only correct option. Fortunately there were not answers like "I only", or "III only", or else I would have got it wrong!!
Intern  B
Joined: 02 Oct 2016
Posts: 25
Re: When positive integer x is divided by positive integer y, the result  [#permalink]

### Show Tags

1
Given xy=a.bcandalso(x−1)y=axy=a.bcandalso(x−1)y=a
this means y∗.bc=1y∗.bc=1
Now Consider I) b<6,
look at second equation y∗.bc=1y∗.bc=1 if b >5 then the result will be greater than 1.
Consider II) y<xy<x
Since xx and yy are positive and xyxy gives a quotient and remainder, xx has to be greater than yy.
Consider III) YY does not equal 3
if YY is equal to 3, then the bc will not be a terminating decimal.

Hence I, II and III all satisfies the statement. Answer is E
Senior Manager  G
Joined: 19 Oct 2018
Posts: 262
Location: India
Re: When positive integer x is divided by positive integer y, the result  [#permalink]

### Show Tags

1.The maximum value of bc=25 (remainder=1 and y=4)
hence b is always less than 6
2. x=ay+1
when a=0, then y>x
3. As the x/y is terminating decimal, y can never be equal to 3

Only 1 and 3 statements must be true Re: When positive integer x is divided by positive integer y, the result   [#permalink] 21 May 2019, 11:55
Display posts from previous: Sort by

# When positive integer x is divided by positive integer y, the result

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.

#### MBA Resources  