January 19, 2019 January 19, 2019 07:00 AM PST 09:00 AM PST Aiming to score 760+? Attend this FREE session to learn how to Define your GMAT Strategy, Create your Study Plan and Master the Core Skills to excel on the GMAT. January 20, 2019 January 20, 2019 07:00 AM PST 07:00 AM PST Get personalized insights on how to achieve your Target Quant Score.
Author 
Message 
TAGS:

Hide Tags

Manager
Joined: 02 Dec 2012
Posts: 177

Working simultaneously at their respective constant rates, M
[#permalink]
Show Tags
06 Dec 2012, 08:58
Question Stats:
74% (01:33) correct 26% (02:29) wrong based on 2968 sessions
HideShow timer Statistics
Working simultaneously at their respective constant rates, Machines A and B produce 800 nails in x hours. Working alone at its constant rate, Machine A produces 800 nails in y hours. In terms of x and y, how many hours does it take Machine B, working alone at its constant rate, to produce 800 nails? (A) x/(x+y) (B) y/(x+y) (C) xy/(x+y) (D) xy/(xy) (E) xy/(yx)
Official Answer and Stats are available only to registered users. Register/ Login.




Math Expert
Joined: 02 Sep 2009
Posts: 52294

Re: Working simultaneously at their respective constant rates, M
[#permalink]
Show Tags
06 Dec 2012, 09:06
Walkabout wrote: Working simultaneously at their respective constant rates, Machines A and B produce 800 nails in x hours. Working alone at its constant rate, Machine A produces 800 nails in y hours. In terms of x and y, how many hours does it take Machine B, working alone at its constant rate, to produce 800 nails?
(A) x/(x+y) (B) y/(x+y) (C) xy/(x+y) (D) xy/(xy) (E) xy/(yx) Pick some smart numbers for x and y. Say x=1 hour and y=2 hours (notice that y must be greater than x, since the time for machine A to do the job, which is y hours, must be more than the time for machines A and B working together to do the same job, which is x hours). In this case, the time needed for machine B to do the job must also be 2 hours: 1/2+1/2=1. Now, plug x=1 and y=2 in the options to see which one yields 2. Only option E fits. Answer: E.
_________________
New to the Math Forum? Please read this: Ultimate GMAT Quantitative Megathread  All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics




Manager
Joined: 22 Dec 2011
Posts: 229

Re: Working simultaneously at their respective constant rates, M
[#permalink]
Show Tags
06 Dec 2012, 11:28
Walkabout wrote: Working simultaneously at their respective constant rates, Machines A and B produce 800 nails in x hours. Working alone at its constant rate, Machine A produces 800 nails in y hours. In terms of x and y, how many hours does it take Machine B, working alone at its constant rate, to produce 800 nails?
(A) x/(x+y) (B) y/(x+y) (C) xy/(x+y) (D) xy/(xy) (E) xy/(yx) The above sol is awesome.... but i did it the longer way, algebraically... rate of A be a and B be b a + b = \(800/x\) ..... 1 a = \(800/y\) ..... 2 Use 2 in 1... we get b = \(800 (yx) / xy\) Finally Rate of B * time = Work done by B (we want time) \(800 (yx) / xy * t = 800\) t = \(xy / (yx)\)




Intern
Joined: 29 May 2013
Posts: 5

Re: Working simultaneously at their respective constant rates, M
[#permalink]
Show Tags
18 Sep 2013, 05:49
RateA + RateB = 800/x
RateA = 800/y RateB = 800/z
So > 800/y + 800/z = 800/x
1/y + 1/z = 1/x > 1/z = 1/x  1/y z = xy/(yx)



Manager
Joined: 01 Oct 2010
Posts: 76
Location: United States (NC)
GPA: 2.3
WE: Information Technology (Computer Software)

Re: Working simultaneously at their respective constant rates, M
[#permalink]
Show Tags
04 Oct 2013, 07:31
Jp27 wrote: Walkabout wrote: Working simultaneously at their respective constant rates, Machines A and B produce 800 nails in x hours. Working alone at its constant rate, Machine A produces 800 nails in y hours. In terms of x and y, how many hours does it take Machine B, working alone at its constant rate, to produce 800 nails?
(A) x/(x+y) (B) y/(x+y) (C) xy/(x+y) (D) xy/(xy) (E) xy/(yx) The above sol is awesome.... but i did it the longer way, algebraically... rate of A be a and B be b a + b = \(800/x\) ..... 1 a = \(800/y\) ..... 2 Use 2 in 1... we get b = \(800 (yx) / xy\) Finally Rate of B * time = Work done by B (we want time) \(800 (yx) / xy * t = 800\) t = \(xy / (yx)\) Yeah, R*T=W is a lengthy way to solve these problems but, I have seen that it is almost a sure shot way to solve most of the problems on this concept. Picking up the smart numbers may be a neat way to solve these questions but it highly depends on the mental state when you are taking the exam.
_________________
 Consider to give me kudos if my post helped you.



Intern
Joined: 30 Apr 2010
Posts: 20

Re: Working simultaneously at their respective constant rates, M
[#permalink]
Show Tags
20 Oct 2013, 15:48
A and B : 1/x = 1/800 A alone: 1/y = 1/800 B alone: A and B  A: 1/x  1/y = 0
solving it: (y  x)/xy => total time it takes is the reciprocal therefore B alone = xy/(yx)
Answer: E



Senior Manager
Joined: 07 Apr 2012
Posts: 360

Re: Working simultaneously at their respective constant rates, M
[#permalink]
Show Tags
02 Nov 2013, 07:20
Jp27 wrote: Walkabout wrote: Working simultaneously at their respective constant rates, Machines A and B produce 800 nails in x hours. Working alone at its constant rate, Machine A produces 800 nails in y hours. In terms of x and y, how many hours does it take Machine B, working alone at its constant rate, to produce 800 nails?
(A) x/(x+y) (B) y/(x+y) (C) xy/(x+y) (D) xy/(xy) (E) xy/(yx) The above sol is awesome.... but i did it the longer way, algebraically... rate of A be a and B be b a + b = \(800/x\) ..... 1 a = \(800/y\) ..... 2 Use 2 in 1... we get b = \(800 (yx) / xy\) Finally Rate of B * time = Work done by B (we want time) \(800 (yx) / xy * t = 800\) t = \(xy / (yx)\) I had a problem with this. (1/A + 1/B) X = 800 (1/A)Y = 800 and when comparing both, I have too many unknowns....



Math Expert
Joined: 02 Sep 2009
Posts: 52294

Re: Working simultaneously at their respective constant rates, M
[#permalink]
Show Tags
03 Nov 2013, 10:27
ronr34 wrote: Jp27 wrote: Walkabout wrote: Working simultaneously at their respective constant rates, Machines A and B produce 800 nails in x hours. Working alone at its constant rate, Machine A produces 800 nails in y hours. In terms of x and y, how many hours does it take Machine B, working alone at its constant rate, to produce 800 nails?
(A) x/(x+y) (B) y/(x+y) (C) xy/(x+y) (D) xy/(xy) (E) xy/(yx) The above sol is awesome.... but i did it the longer way, algebraically... rate of A be a and B be b a + b = \(800/x\) ..... 1 a = \(800/y\) ..... 2 Use 2 in 1... we get b = \(800 (yx) / xy\) Finally Rate of B * time = Work done by B (we want time) \(800 (yx) / xy * t = 800\) t = \(xy / (yx)\) I had a problem with this. (1/A + 1/B) X = 800 (1/A)Y = 800 and when comparing both, I have too many unknowns.... That's because you stop on a halfway. Try to continue as suggested by Jp27 in the post you are quoting.
_________________
New to the Math Forum? Please read this: Ultimate GMAT Quantitative Megathread  All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics



Senior Manager
Status: Verbal Forum Moderator
Joined: 17 Apr 2013
Posts: 480
Location: India
GMAT 1: 710 Q50 V36 GMAT 2: 750 Q51 V41 GMAT 3: 790 Q51 V49
GPA: 3.3

Re: Working simultaneously at their respective constant rates, M
[#permalink]
Show Tags
17 Nov 2013, 01:11
Simplest solution Here RA + RB = 1/X RA = 1/Y RB = (1/X  1/Y) = (YX)/XY Time = 1/RB = XY/(X+Y) I have treated 800 as equivalent to unity(= 1), as it's presence in final answer was trivial, as it will eventually cancel out, taking it unity has make the solution quite Un Complex..
_________________
Like my post Send me a Kudos It is a Good manner. My Debrief: http://gmatclub.com/forum/howtoscore750and750imovedfrom710to189016.html



Director
Joined: 03 Aug 2012
Posts: 715
Concentration: General Management, General Management
GMAT 1: 630 Q47 V29 GMAT 2: 680 Q50 V32
GPA: 3.7
WE: Information Technology (Investment Banking)

Re: Working simultaneously at their respective constant rates, M
[#permalink]
Show Tags
29 Mar 2014, 02:50
Another approach:
Rate(A) = 800/y Rate(A+B) = 800/x
Rate A + Rate B = Rate(A+B)
=> Rate(B) = Rate(A+B)  Rate(A) = 800(yx)/xy
Then the GODFATHER equation Rate * Time = Work
800(yx)/xy * Time = 800
Time = xy/(yx)
Rgds, TGC!



Manager
Joined: 15 Aug 2013
Posts: 247

Re: Working simultaneously at their respective constant rates, M
[#permalink]
Show Tags
06 Apr 2014, 15:49
I managed to solve this via plugging in numbers but I went over 3 minutes! With these pluginnumbers type of problems, I strive to pick simple numbers but there always seems to be one, usually the one i'm solving for, that ends up being a rather complicated number. My question is:
1) I plugged in Rate A and Rate A+B and then solved for time. Should I have plugged in numbers for time directly. Is there a general rule as to what number I should be plugging in? 2) In this case, to keep things super simple, I could have plugged the total Rate to be 8 and Ra and Rb to both be 4. Is it bad practice to choose the same numbers for the individual rates/times?



SVP
Status: The Best Or Nothing
Joined: 27 Dec 2012
Posts: 1823
Location: India
Concentration: General Management, Technology
WE: Information Technology (Computer Software)

Re: Working simultaneously at their respective constant rates, M
[#permalink]
Show Tags
07 Apr 2014, 00:04
russ9 wrote: I managed to solve this via plugging in numbers but I went over 3 minutes! With these pluginnumbers type of problems, I strive to pick simple numbers but there always seems to be one, usually the one i'm solving for, that ends up being a rather complicated number. My question is:
1) I plugged in Rate A and Rate A+B and then solved for time. Should I have plugged in numbers for time directly. Is there a general rule as to what number I should be plugging in? 2) In this case, to keep things super simple, I could have plugged the total Rate to be 8 and Ra and Rb to both be 4. Is it bad practice to choose the same numbers for the individual rates/times? Just refer to method of Bunuel; he did using plugins. I used same variables available & got correct answer (Had taken 800 = 1 as done by honchos)
_________________
Kindly press "+1 Kudos" to appreciate



Intern
Joined: 13 Feb 2014
Posts: 6

Re: Working simultaneously at their respective constant rates, M
[#permalink]
Show Tags
22 Apr 2014, 02:11
Q: I get the algebra but I got confused with this question because I thaught adding and deviding rates was a NoNo? Why is it diffrent in this case?



SVP
Status: The Best Or Nothing
Joined: 27 Dec 2012
Posts: 1823
Location: India
Concentration: General Management, Technology
WE: Information Technology (Computer Software)

Re: Working simultaneously at their respective constant rates, M
[#permalink]
Show Tags
22 Apr 2014, 02:45
gciftci wrote: Q: I get the algebra but I got confused with this question because I thaught adding and deviding rates was a NoNo? Why is it diffrent in this case? You can add rates when required to find simultaneous work done etc. In distance / time / speed related problems, we cannot add up the speeds Hope it helps
_________________
Kindly press "+1 Kudos" to appreciate



Math Expert
Joined: 02 Sep 2009
Posts: 52294

Re: Working simultaneously at their respective constant rates, M
[#permalink]
Show Tags
22 Apr 2014, 02:52
gciftci wrote: Q: I get the algebra but I got confused with this question because I thaught adding and deviding rates was a NoNo? Why is it diffrent in this case? No, we CAN easily sum the rates. For example: If we are told that A can complete a job in 2 hours and B can complete the same job in 3 hours, then A's rate is 1/2 job/hour and B's rate is 1/3 job/hour. The combined rate of A and B working simultaneously would be 1/2+1/3=5/6 job/hours, which means that the will complete 5/6 job in hour working together. THEORYThere are several important things you should know to solve work problems: 1. Time, rate and job in work problems are in the same relationship as time, speed (rate) and distance in rate problems.\(time*speed=distance\) <> \(time*rate=job \ done\). For example when we are told that a man can do a certain job in 3 hours we can write: \(3*rate=1\) > \(rate=\frac{1}{3}\) job/hour. Or when we are told that 2 printers need 5 hours to complete a certain job then \(5*(2*rate)=1\) > so rate of 1 printer is \(rate=\frac{1}{10}\) job/hour. Another example: if we are told that 2 printers need 3 hours to print 12 pages then \(3*(2*rate)=12\) > so rate of 1 printer is \(rate=2\) pages per hour; So, time to complete one job = reciprocal of rate. For example if 6 hours (time) are needed to complete one job > 1/6 of the job will be done in 1 hour (rate). 2. We can sum the rates.If we are told that A can complete one job in 2 hours and B can complete the same job in 3 hours, then A's rate is \(rate_a=\frac{job}{time}=\frac{1}{2}\) job/hour and B's rate is \(rate_b=\frac{job}{time}=\frac{1}{3}\) job/hour. Combined rate of A and B working simultaneously would be \(rate_{a+b}=rate_a+rate_b=\frac{1}{2}+\frac{1}{3}=\frac{5}{6}\) job/hour, which means that they will complete \(\frac{5}{6}\) job in one hour working together. 3. For multiple entities: \(\frac{1}{t_1}+\frac{1}{t_2}+\frac{1}{t_3}+...+\frac{1}{t_n}=\frac{1}{T}\), where \(T\) is time needed for these entities to complete a given job working simultaneously.For example if: Time needed for A to complete the job is A hours; Time needed for B to complete the job is B hours; Time needed for C to complete the job is C hours; ... Time needed for N to complete the job is N hours; Then: \(\frac{1}{A}+\frac{1}{B}+\frac{1}{C}+...+\frac{1}{N}=\frac{1}{T}\), where T is the time needed for A, B, C, ..., and N to complete the job working simultaneously. For two and three entities (workers, pumps, ...): General formula for calculating the time needed for two workers A and B working simultaneously to complete one job:Given that \(t_1\) and \(t_2\) are the respective individual times needed for \(A\) and \(B\) workers (pumps, ...) to complete the job, then time needed for \(A\) and \(B\) working simultaneously to complete the job equals to \(T_{(A&B)}=\frac{t_1*t_2}{t_1+t_2}\) hours, which is reciprocal of the sum of their respective rates (\(\frac{1}{t_1}+\frac{1}{t_2}=\frac{1}{T}\)). General formula for calculating the time needed for three A, B and C workers working simultaneously to complete one job:\(T_{(A&B&C)}=\frac{t_1*t_2*t_3}{t_1*t_2+t_1*t_3+t_2*t_3}\) hours. Some work problems with solutions: timenworkproblem82718.html?hilit=reciprocal%20ratefacingproblemwiththisquestion91187.html?highlight=rate+reciprocalwhatamidoingwrongtobunuel91124.html?highlight=rate+reciprocalgmatprepps93365.html?hilit=reciprocal%20ratequestionsfromgmatpreppracticeexampleasehelp93632.html?hilit=reciprocal%20rateagoodone98479.html?hilit=ratesolutionrequired100221.html?hilit=work%20rate%20doneworkproblem98599.html?hilit=work%20rate%20donehourstotypepages102407.html?hilit=answer%20choices%20or%20solve%20quadratic%20equation.%20RHope this helps
_________________
New to the Math Forum? Please read this: Ultimate GMAT Quantitative Megathread  All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics



Intern
Joined: 13 Feb 2014
Posts: 6

Re: Working simultaneously at their respective constant rates, M
[#permalink]
Show Tags
22 Apr 2014, 03:24
HI Brunel I get it sir, just got confused with this "If an object moves the same distance twice, but at different rates, then the average rate will NEVER be the average of the two rates given for the two legs of the journey.( MGMAT)"



Math Expert
Joined: 02 Sep 2009
Posts: 52294

Re: Working simultaneously at their respective constant rates, M
[#permalink]
Show Tags
22 Apr 2014, 09:13
gciftci wrote: HI Brunel I get it sir, just got confused with this "If an object moves the same distance twice, but at different rates, then the average rate will NEVER be the average of the two rates given for the two legs of the journey.( MGMAT)" This is about completely different matter: it says that if an object covers 100 miles at 10 miles per hour and another 100 miles at 20 miles per hour, then the average speed for 200 miles won't be (10+20)/2=15 miles per hour. (average speed) = (total distance)/(total time): (total distance) = 100 + 100 = 200 miles. (total time) = 100/10 + 100/20 = 15 hours. (average speed) = (total distance)/(total time) = 200/15 miles per hour. Notice here though that we can add or subtract rates (speeds) to get relative rate. For example if two cars are moving toward each other from A to B (AB=100 miles) with 10mph and 15mph respectively, then their relative (combined) rate is 10+15=25mph, and they'll meet in (time)=(distance)/(rate)=100/25=4 hours; Similarly if car x is 100 miles ahead of car y and they are moving in the same direction with 10mph and 15mph respectively then their relative rate is 1510=5mph, and y will catch up x in 100/5=20 hours. Hope it's clear.
_________________
New to the Math Forum? Please read this: Ultimate GMAT Quantitative Megathread  All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics



Manager
Joined: 15 Aug 2013
Posts: 247

Re: Working simultaneously at their respective constant rates, M
[#permalink]
Show Tags
09 May 2014, 13:24
Bunuel wrote: Walkabout wrote: Working simultaneously at their respective constant rates, Machines A and B produce 800 nails in x hours. Working alone at its constant rate, Machine A produces 800 nails in y hours. In terms of x and y, how many hours does it take Machine B, working alone at its constant rate, to produce 800 nails?
(A) x/(x+y) (B) y/(x+y) (C) xy/(x+y) (D) xy/(xy) (E) xy/(yx) Pick some smart numbers for x and y. Say x=1 hour and y=2 hours (notice that y must be greater than x, since the time for machine A to do the job, which is y hours, must be more than the time for machines A and B working together to do the same job, which is x hours). In this case, the time needed for machine B to do the job must also be 2 hours: 1/2+1/2=1. Now, plug x=1 and y=2 in the options to see which one yields 2. Only option E fits. Answer: E. Hi Bunuel, I managed to solve this via algebra but it took 2+ minutes. When it comes to plugging in "smart numbers", I always get confused as to which variables I should use to plug in smart numbers vs. which numbers I should solve for. In this example, I get completely throw off if I should be plugging in numbers for time(numbers that factor in 800) or if I should plug in numbers for Rate. I get paralysis by analysis when I think about whether the numbers I pick will go flawlessly and thereby Ra and Rb will add up to R a + b or will the factors yield decimals? Do you have any tips on this? Thanks!



Intern
Joined: 13 Jun 2014
Posts: 2
GPA: 3

Re: Working simultaneously at their respective constant rates, M
[#permalink]
Show Tags
01 Jul 2014, 08:38
i am not able to comprehend ,
In this case, the time needed for machine B to do the job must also be 2 hours: 1/2+1/2=1.
how come ??



Math Expert
Joined: 02 Sep 2009
Posts: 52294

Re: Working simultaneously at their respective constant rates, M
[#permalink]
Show Tags
01 Jul 2014, 09:31




Re: Working simultaneously at their respective constant rates, M &nbs
[#permalink]
01 Jul 2014, 09:31



Go to page
1 2 3
Next
[ 41 posts ]



