GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 09 Dec 2019, 11:12

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Working together, printer A and printer B would finish the

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Find Similar Topics 
Manager
Manager
avatar
Joined: 23 May 2010
Posts: 212
Working together, printer A and printer B would finish the  [#permalink]

Show Tags

New post Updated on: 06 Sep 2012, 10:01
6
69
00:00
A
B
C
D
E

Difficulty:

  55% (hard)

Question Stats:

73% (02:49) correct 27% (03:08) wrong based on 615 sessions

HideShow timer Statistics

Working together, printer A and printer B would finish the task in 24 minutes. Printer A alone would finish the task in 60 minutes. How many pages does the task contain if printer B prints 5 pages a minute more than printer A ?

A. 600
B. 800
C. 1000
D. 1200
E. 1500

I know this question is relatively symol if make an equation in one vaibale ...
I tried to do it by applying the fundamental of A = Jobs per min * time ( the way we typically solve the work problems ) and i was stuck

I did jobs per minute A , 1/60
combined rate = 1/24

so rate of b = 1/24 - 1/60 = 1/40

but could not arrive at the solution ... i tried to form the equation by assuming x as the total numbe of pages So x/60+ x+5/40 = cld nt take ot forward from here
kindly see where am I losing the track !

Originally posted by gauravnagpal on 01 Sep 2010, 11:12.
Last edited by Bunuel on 06 Sep 2012, 10:01, edited 2 times in total.
Edited the question.
Most Helpful Expert Reply
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 59623
Re: solution required  [#permalink]

Show Tags

New post 01 Sep 2010, 12:56
17
14
gauravnagpal wrote:
.Working together, printer A and printer B would finish the task in 24 minutes. Printer A alone would finish the task in 60 minutes. How many pages does the task contain if printer B prints 5 pages a minute more than printer A ?

a. 600
b. 800
c. 1000
d. 1200
e. 1500

answer: A
I know this question is relatively symol if make an equation in one vaibale ...
I tried to do it by applying the fundamental of A = Jobs per min * time ( the way we typically solve the work problems ) and i was stuck

I did jobs per minute A , 1/60
combined rate = 1/24

so rate of b = 1/24 - 1/60 = 1/40

but could not arrive at the solution ... i tried to form the equation by assuming x as the total numbe of pages So x/60+ x+5/40 = cld nt take ot forward from here
kindly see where am I losing the track !


Let the rate of printer A be \(a\) pages per minute, the rate of printer B be \(b\) pages per minute and whole task be \(x\) pages.

\(time*rate=job \ done\):

Working together, printer A and printer B would finish the task in 24 minutes" --> \(24(a+b)=x\);
Printer A alone would finish the task in 60 minutes --> \(60a=x\);
Printer B prints 5 pages a minute more than printer A --> \(b=a+5\).

Solving for \(x\) --> \(x=600\).

Answer: A.

Some work problems with solutions:
time-n-work-problem-82718.html?hilit=reciprocal%20rate
facing-problem-with-this-question-91187.html?highlight=rate+reciprocal
what-am-i-doing-wrong-to-bunuel-91124.html?highlight=rate+reciprocal
gmat-prep-ps-93365.html?hilit=reciprocal%20rate
questions-from-gmat-prep-practice-exam-please-help-93632.html?hilit=reciprocal%20rate
a-good-one-98479.html?hilit=rate

Hope it helps.
_________________
Most Helpful Community Reply
Intern
Intern
avatar
Joined: 08 Oct 2009
Posts: 7
Re: solution required  [#permalink]

Show Tags

New post 03 Sep 2010, 11:26
25
9
B in a minute=x/40
A in a minute=x/60
then,
x/40-x/60=5

Solving x=600
General Discussion
Senior Manager
Senior Manager
avatar
Joined: 28 Jul 2011
Posts: 297
Location: United States
Concentration: International Business, General Management
GPA: 3.86
WE: Accounting (Commercial Banking)
Re: solution required  [#permalink]

Show Tags

New post 06 Sep 2012, 08:09
1
Bunuel wrote:
gauravnagpal wrote:
.Working together, printer A and printer B would finish the task in 24 minutes. Printer A alone would finish the task in 60 minutes. How many pages does the task contain if printer B prints 5 pages a minute more than printer A ?

a. 600
b. 800
c. 1000
d. 1200
e. 1500

answer: A
I know this question is relatively symol if make an equation in one vaibale ...
I tried to do it by applying the fundamental of A = Jobs per min * time ( the way we typically solve the work problems ) and i was stuck

I did jobs per minute A , 1/60
combined rate = 1/24

so rate of b = 1/24 - 1/60 = 1/40

but could not arrive at the solution ... i tried to form the equation by assuming x as the total numbe of pages So x/60+ x+5/40 = cld nt take ot forward from here
kindly see where am I losing the track !


Let the rate of printer A be \(a\) pages per minute, the rate of printer B be \(b\) pages per minute and whole task be \(x\) pages.

\(time*rate=job \ done\):

Working together, printer A and printer B would finish the task in 24 minutes" --> \(24(a+b)=x\);
Printer A alone would finish the task in 60 minutes --> \(60a=x\);
Printer B prints 5 pages a minute more than printer A --> \(b=a+5\).

Solving for \(x\) --> \(x=600\).

Answer: A.

Some work problems with solutions:
time-n-work-problem-82718.html?hilit=reciprocal%20rate
facing-problem-with-this-question-91187.html?highlight=rate+reciprocal
what-am-i-doing-wrong-to-bunuel-91124.html?highlight=rate+reciprocal
gmat-prep-ps-93365.html?hilit=reciprocal%20rate
questions-from-gmat-prep-practice-exam-please-help-93632.html?hilit=reciprocal%20rate
a-good-one-98479.html?hilit=rate

Hope it helps.


Hi Bunnel,

I have always one confusion in rate and work problems can you please clarify this?,

When do we add rates i.e what you did above...... \(24(a+b)=x\);

and when do we divide by rates i.e something . rate =(Job done/ time)

Regards

Srinath
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 59623
Re: solution required  [#permalink]

Show Tags

New post 06 Sep 2012, 10:39
kotela wrote:
Bunuel wrote:
gauravnagpal wrote:
.Working together, printer A and printer B would finish the task in 24 minutes. Printer A alone would finish the task in 60 minutes. How many pages does the task contain if printer B prints 5 pages a minute more than printer A ?

a. 600
b. 800
c. 1000
d. 1200
e. 1500

answer: A
I know this question is relatively symol if make an equation in one vaibale ...
I tried to do it by applying the fundamental of A = Jobs per min * time ( the way we typically solve the work problems ) and i was stuck

I did jobs per minute A , 1/60
combined rate = 1/24

so rate of b = 1/24 - 1/60 = 1/40

but could not arrive at the solution ... i tried to form the equation by assuming x as the total numbe of pages So x/60+ x+5/40 = cld nt take ot forward from here
kindly see where am I losing the track !


Let the rate of printer A be \(a\) pages per minute, the rate of printer B be \(b\) pages per minute and whole task be \(x\) pages.

\(time*rate=job \ done\):

Working together, printer A and printer B would finish the task in 24 minutes" --> \(24(a+b)=x\);
Printer A alone would finish the task in 60 minutes --> \(60a=x\);
Printer B prints 5 pages a minute more than printer A --> \(b=a+5\).

Solving for \(x\) --> \(x=600\).

Answer: A.

Some work problems with solutions:
time-n-work-problem-82718.html?hilit=reciprocal%20rate
facing-problem-with-this-question-91187.html?highlight=rate+reciprocal
what-am-i-doing-wrong-to-bunuel-91124.html?highlight=rate+reciprocal
gmat-prep-ps-93365.html?hilit=reciprocal%20rate
questions-from-gmat-prep-practice-exam-please-help-93632.html?hilit=reciprocal%20rate
a-good-one-98479.html?hilit=rate

Hope it helps.


Hi Bunnel,

I have always one confusion in rate and work problems can you please clarify this?,

When do we add rates i.e what you did above...... \(24(a+b)=x\);

and when do we divide by rates i.e something . rate =(Job done/ time)

Regards

Srinath


You can denote rate directly by some variable (a in the solution) or express rate as a reciprocal of time. For example, say printer A needs t minutes to print 1 page and printer B needs m minutes to print 1 page, then the rate of printer A would be job/time=1/t pages per minute and the rate of printer B would be 1/m pages per minute (rate is a reciprocal of time, so 1/t=a and 1/m=b). In this case the equation would be 24(1/t+1/m)=x.

Hope it's clear.
_________________
Manager
Manager
avatar
Joined: 28 Feb 2012
Posts: 103
Concentration: Strategy, International Business
Schools: INSEAD Jan '13
GPA: 3.9
WE: Marketing (Other)
GMAT ToolKit User
Re: Working together, printer A and printer B would finish the  [#permalink]

Show Tags

New post 08 Sep 2012, 05:51
6
First thing i did was i found out time that is required to B to complete the task alone: 1/24-1/60=3/120=1/40. Then i looked at the information which states that the rate of B is 5+ page than that of A so, lets say x is the number of pages printed by A per minute, so the task consists of 60*x or 40*(x+5) pages. I can make an equation: 60x=40(x+5), 20x=200, x=10, total number of pages is 60*10=600 or 40*15=600

Answer is A.

It is clear but it took me about 3 min to do it, does it because i am doing it slow or i am using longer route?
Senior Manager
Senior Manager
User avatar
Joined: 13 Aug 2012
Posts: 398
Concentration: Marketing, Finance
GPA: 3.23
GMAT ToolKit User
Re: Working together, printer A and printer B would finish the  [#permalink]

Show Tags

New post 15 Nov 2012, 05:37
3
4
\(\frac{1}{A}=\frac{1}{60}\)
\(\frac{1}{B}+\frac{1}{A}=\frac{1}{24}\)

Get: \(\frac{1}{B}\)

\(\frac{1}{B}=\frac{1}{24}-\frac{1}{60}=\frac{1}{40}\)

Let p be the number of pages produced by A.
Let p+5 be the number of pages produced by B.

\(24(p + p+5) = 60(p)==> p=10pages\)

Answer: 60(p)=600pages
Manager
Manager
avatar
Joined: 22 Nov 2010
Posts: 216
Location: India
GMAT 1: 670 Q49 V33
WE: Consulting (Telecommunications)
Re: Working together, printer A and printer B would finish the  [#permalink]

Show Tags

New post 04 Mar 2013, 00:40
3
gauravnagpal wrote:
Working together, printer A and printer B would finish the task in 24 minutes. Printer A alone would finish the task in 60 minutes. How many pages does the task contain if printer B prints 5 pages a minute more than printer A ?

A. 600
B. 800
C. 1000
D. 1200
E. 1500

I know this question is relatively symol if make an equation in one vaibale ...
I tried to do it by applying the fundamental of A = Jobs per min * time ( the way we typically solve the work problems ) and i was stuck

I did jobs per minute A , 1/60
combined rate = 1/24

so rate of b = 1/24 - 1/60 = 1/40

but could not arrive at the solution ... i tried to form the equation by assuming x as the total numbe of pages So x/60+ x+5/40 = cld nt take ot forward from here
kindly see where am I losing the track !


total time taken by B = 24 * 60 / (60 -24) = 40 min.

A take 60 min. B takes 40 min to complete a task.

Now, divide the values given in option (in Ans) to get the rate per min.

option A: 600 / 10 = 60 & 600/40 = 15...> this satisfies the condition given in question stem that printer B prints 5 pages a minute more than printer A ?
. therefore A
_________________
YOU CAN, IF YOU THINK YOU CAN
Director
Director
User avatar
Status: Everyone is a leader. Just stop listening to others.
Joined: 22 Mar 2013
Posts: 699
Location: India
GPA: 3.51
WE: Information Technology (Computer Software)
Reviews Badge
Re: Working together, printer A and printer B would finish the  [#permalink]

Show Tags

New post 21 Sep 2013, 11:31
1
2
Ta = 60min
Ra = 1/Ta = 1/60
Rb = 1/Tb

Combined task completion time 24min.
=Ra + Rb
=1/60 + 1/Tb = 1/24
Tb = 40 min.

Ra = X/Ta Rb = X/Tb

Ra + 5 = Rb
X/Ta + 5 = X/Tb
X/60 + 5 = X/40
X=600 Ans.
Manager
Manager
avatar
Joined: 26 Feb 2013
Posts: 147
Re: Working together, printer A and printer B would finish the  [#permalink]

Show Tags

New post 25 Sep 2013, 04:09
mbaiseasy wrote:
Let p be the number of pages produced by A.
Let p+5 be the number of pages produced by B.

\(24(p + p+5) = 60(p)==> p=10pages\)

Answer: 60(p)=600pages



How do you come up with these??
Manager
Manager
avatar
Joined: 26 Sep 2013
Posts: 182
Concentration: Finance, Economics
GMAT 1: 670 Q39 V41
GMAT 2: 730 Q49 V41
Re: solution required  [#permalink]

Show Tags

New post 20 Nov 2013, 16:01
Bunuel wrote:
gauravnagpal wrote:
.Working together, printer A and printer B would finish the task in 24 minutes. Printer A alone would finish the task in 60 minutes. How many pages does the task contain if printer B prints 5 pages a minute more than printer A ?

a. 600
b. 800
c. 1000
d. 1200
e. 1500

answer: A
I know this question is relatively symol if make an equation in one vaibale ...
I tried to do it by applying the fundamental of A = Jobs per min * time ( the way we typically solve the work problems ) and i was stuck

I did jobs per minute A , 1/60
combined rate = 1/24

so rate of b = 1/24 - 1/60 = 1/40

but could not arrive at the solution ... i tried to form the equation by assuming x as the total numbe of pages So x/60+ x+5/40 = cld nt take ot forward from here
kindly see where am I losing the track !


Let the rate of printer A be \(a\) pages per minute, the rate of printer B be \(b\) pages per minute and whole task be \(x\) pages.

\(time*rate=job \ done\):

Working together, printer A and printer B would finish the task in 24 minutes" --> \(24(a+b)=x\);
Printer A alone would finish the task in 60 minutes --> \(60a=x\);
Printer B prints 5 pages a minute more than printer A --> \(b=a+5\).

Solving for \(x\) --> \(x=600\).

Answer: A.

Some work problems with solutions:
time-n-work-problem-82718.html?hilit=reciprocal%20rate
facing-problem-with-this-question-91187.html?highlight=rate+reciprocal
what-am-i-doing-wrong-to-bunuel-91124.html?highlight=rate+reciprocal
gmat-prep-ps-93365.html?hilit=reciprocal%20rate
questions-from-gmat-prep-practice-exam-please-help-93632.html?hilit=reciprocal%20rate
a-good-one-98479.html?hilit=rate

Hope it helps.



I'm curious about the 1/a+1/b=1/24 solution as well. I started out trying that way and got stuck at the same point as the other fellow. Is there any way to solve it once you have 1/60+1/40 for their combined rates? Or is that just a dead end?


edit: Also, question #2:

Shouldn't the equation be 24(1/a+1/b)=x; ? Since you have 24 minutes in which the machines are working at their individual rates, doing 1/a and 1/b of the job per minute? I don't get how one can know when to arbitrarily use "a" instead of '1/a" or "b" instead of "1/b"
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 59623
Re: solution required  [#permalink]

Show Tags

New post 21 Nov 2013, 02:40
1
AccipiterQ wrote:
Bunuel wrote:
gauravnagpal wrote:
.Working together, printer A and printer B would finish the task in 24 minutes. Printer A alone would finish the task in 60 minutes. How many pages does the task contain if printer B prints 5 pages a minute more than printer A ?

a. 600
b. 800
c. 1000
d. 1200
e. 1500

answer: A
I know this question is relatively symol if make an equation in one vaibale ...
I tried to do it by applying the fundamental of A = Jobs per min * time ( the way we typically solve the work problems ) and i was stuck

I did jobs per minute A , 1/60
combined rate = 1/24

so rate of b = 1/24 - 1/60 = 1/40

but could not arrive at the solution ... i tried to form the equation by assuming x as the total numbe of pages So x/60+ x+5/40 = cld nt take ot forward from here
kindly see where am I losing the track !


Let the rate of printer A be \(a\) pages per minute, the rate of printer B be \(b\) pages per minute and whole task be \(x\) pages.

\(time*rate=job \ done\):

Working together, printer A and printer B would finish the task in 24 minutes" --> \(24(a+b)=x\);
Printer A alone would finish the task in 60 minutes --> \(60a=x\);
Printer B prints 5 pages a minute more than printer A --> \(b=a+5\).

Solving for \(x\) --> \(x=600\).

Answer: A.

Some work problems with solutions:
time-n-work-problem-82718.html?hilit=reciprocal%20rate
facing-problem-with-this-question-91187.html?highlight=rate+reciprocal
what-am-i-doing-wrong-to-bunuel-91124.html?highlight=rate+reciprocal
gmat-prep-ps-93365.html?hilit=reciprocal%20rate
questions-from-gmat-prep-practice-exam-please-help-93632.html?hilit=reciprocal%20rate
a-good-one-98479.html?hilit=rate

Hope it helps.



I'm curious about the 1/a+1/b=1/24 solution as well. I started out trying that way and got stuck at the same point as the other fellow. Is there any way to solve it once you have 1/60+1/40 for their combined rates? Or is that just a dead end?


edit: Also, question #2:

Shouldn't the equation be 24(1/a+1/b)=x; ? Since you have 24 minutes in which the machines are working at their individual rates, doing 1/a and 1/b of the job per minute? I don't get how one can know when to arbitrarily use "a" instead of '1/a" or "b" instead of "1/b"


In this case we'd have:
The rate of printer A = 1/a pages per minute, where a is the time to print 1 page.
The rate of printer B = 1/b pages per minute, where b is the time to print 1 page.

Working together, printer A and printer B would finish the task in 24 minutes" --> \(24(\frac{1}{a}+\frac{1}{b})=x\);
Printer A alone would finish the task in 60 minutes --> \(60*\frac{1}{a}=x\);
Printer B prints 5 pages a minute more than printer A --> \(\frac{1}{b}=\frac{1}{a}+5\).

Solving for \(x\) --> \(x=600\).

Answer: A.
_________________
Director
Director
avatar
Joined: 03 Aug 2012
Posts: 653
Concentration: General Management, General Management
GMAT 1: 630 Q47 V29
GMAT 2: 680 Q50 V32
GPA: 3.7
WE: Information Technology (Investment Banking)
Re: Working together, printer A and printer B would finish the  [#permalink]

Show Tags

New post 18 Mar 2014, 07:00
2
1
Rate A= X
Rate B= X+5

Work(A)=> X * 60 = 60X

Rate(A+B) * 24 = Work

(2X+5) * 24 = 60X

X=10
Manager
Manager
User avatar
S
Joined: 11 Sep 2013
Posts: 131
Concentration: Finance, Finance
Re: Working together, printer A and printer B would finish the  [#permalink]

Show Tags

New post 22 Apr 2014, 21:56
A does in one minute =x pages
Therefore, in 60 minutes=60x pages

B does in one minute= x+5
In 24 minutes both do 60x pages
24x+24(x+5)=60x
X=10 total work=60*10=600 pages
Intern
Intern
avatar
Joined: 21 Oct 2012
Posts: 31
Location: United States
Concentration: Marketing, Operations
GMAT 1: 650 Q44 V35
GMAT 2: 600 Q47 V26
GMAT 3: 660 Q43 V38
GPA: 3.6
WE: Information Technology (Computer Software)
Re: Working together, printer A and printer B would finish the  [#permalink]

Show Tags

New post 15 May 2014, 11:02
3
2
Easiest way to do this: Machine A and B can do the task in 24 minutes thus Rate of A and B = 1/24. Now given A can do the task in 60 minutes therefore Rate of A= 1/60. We know that Rate of A and B = Rate of A + Rate of B therefore Rate of B= Rate of A and B - Rate of A = 1/24-1/60= 1/40. Now we know that Rate of B = 1/40 thus B can do the work in 40 minutes.

Let pages printed per minute by A = x, given that pages printed by B per minute is 5 more than that of A
Pages printed by B per minute = x+5
Now Complete task is done by A in 60 minutes therefore total number of pages printed by A = x * 60
Also Complete task is done by B in 40 minutes therefore total number of pages printed by B = (x+5) * 40
therefore x * 60 = (x+5) * 40
therefore x=10
thus the total number of pages in task = x*60 = 10*60 = 600 :-D
Senior Manager
Senior Manager
User avatar
G
Joined: 03 Apr 2013
Posts: 259
Location: India
Concentration: Marketing, Finance
GMAT 1: 740 Q50 V41
GPA: 3
GMAT ToolKit User
Re: Working together, printer A and printer B would finish the  [#permalink]

Show Tags

New post 18 Jul 2016, 05:29
1
gauravnagpal wrote:
Working together, printer A and printer B would finish the task in 24 minutes. Printer A alone would finish the task in 60 minutes. How many pages does the task contain if printer B prints 5 pages a minute more than printer A ?

A. 600
B. 800
C. 1000
D. 1200
E. 1500

I know this question is relatively symol if make an equation in one vaibale ...
I tried to do it by applying the fundamental of A = Jobs per min * time ( the way we typically solve the work problems ) and i was stuck

I did jobs per minute A , 1/60
combined rate = 1/24

so rate of b = 1/24 - 1/60 = 1/40

but could not arrive at the solution ... i tried to form the equation by assuming x as the total numbe of pages So x/60+ x+5/40 = cld nt take ot forward from here
kindly see where am I losing the track !



Okay..this is how I did it..
Let the task(number of pages) be 120x(LCM of all numbers given in the problem)..

A and B take 24 minutes to complete it..thus, pages per min = 5x
A's pages per minute = 2x
B's pages per minute = 3x

Difference
3x - 2x = 5
=> x = 5
Thus, 120x = 600..(A)
Director
Director
User avatar
D
Joined: 05 Mar 2015
Posts: 978
Reviews Badge
Working together, printer A and printer B would finish the  [#permalink]

Show Tags

New post 25 Feb 2017, 20:30
2
gauravnagpal wrote:
Working together, printer A and printer B would finish the task in 24 minutes. Printer A alone would finish the task in 60 minutes. How many pages does the task contain if printer B prints 5 pages a minute more than printer A ?

A. 600
B. 800
C. 1000
D. 1200
E. 1500

I know this question is relatively symol if make an equation in one vaibale ...
I tried to do it by applying the fundamental of A = Jobs per min * time ( the way we typically solve the work problems ) and i was stuck

I did jobs per minute A , 1/60
combined rate = 1/24

so rate of b = 1/24 - 1/60 = 1/40

but could not arrive at the solution ... i tried to form the equation by assuming x as the total numbe of pages So x/60+ x+5/40 = cld nt take ot forward from here
kindly see where am I losing the track !


Another approach after getting rate for B
as rate of B = 1/40
let A prints x pages a minute , then B will print x+5pages a minute
A work for 60 minutes and B work for 40 minutes alone and so ,they are able to print same no. of pages
thus,
40(x+5) = 60x
40x+200 =60x
20x=200
x=10
thus total no of pages = 60x or 40(x+5) =600 pages
Ans A
Manager
Manager
User avatar
G
Joined: 09 Jan 2016
Posts: 100
GPA: 3.4
WE: General Management (Human Resources)
Re: Working together, printer A and printer B would finish the  [#permalink]

Show Tags

New post 03 Jul 2017, 04:48
gauravnagpal wrote:
Working together, printer A and printer B would finish the task in 24 minutes. Printer A alone would finish the task in 60 minutes. How many pages does the task contain if printer B prints 5 pages a minute more than printer A ?

A. 600
B. 800
C. 1000
D. 1200
E. 1500

I know this question is relatively symol if make an equation in one vaibale ...
I tried to do it by applying the fundamental of A = Jobs per min * time ( the way we typically solve the work problems ) and i was stuck

I did jobs per minute A , 1/60
combined rate = 1/24

so rate of b = 1/24 - 1/60 = 1/40

but could not arrive at the solution ... i tried to form the equation by assuming x as the total numbe of pages So x/60+ x+5/40 = cld nt take ot forward from here
kindly see where am I losing the track !

Given that, A can finish in 60 minutes, combined 24 minutes.
so, the rate of B = 1/24- 1/60 equals 1/40 thus B takes 40 minutes to accomplish the job alone.
As B can finish 5 more pages than A in a minute. Let, A can print x pages per minutes then, B = x+5
60x = 40( x+5)
x= 10
Thus total number of pages together can print = 60 *10

A. 600
Board of Directors
User avatar
D
Status: QA & VA Forum Moderator
Joined: 11 Jun 2011
Posts: 4834
Location: India
GPA: 3.5
WE: Business Development (Commercial Banking)
GMAT ToolKit User
Re: Working together, printer A and printer B would finish the  [#permalink]

Show Tags

New post 06 Aug 2018, 08:21
gauravnagpal wrote:
Working together, printer A and printer B would finish the task in 24 minutes. Printer A alone would finish the task in 60 minutes. How many pages does the task contain if printer B prints 5 pages a minute more than printer A ?

A. 600
B. 800
C. 1000
D. 1200
E. 1500


Let the total work be 120 units

So, Efficiency of A and B is 5 units/min & Efficiency of A is 2 units/min

Thus , the efficiency of B is 3 units/min

So, 1unit/min = 5 Pages

Hence, 120 Units = 120*5 => 600 Units, Answer must be (A)
_________________
Thanks and Regards

Abhishek....

PLEASE FOLLOW THE RULES FOR POSTING IN QA AND VA FORUM AND USE SEARCH FUNCTION BEFORE POSTING NEW QUESTIONS

How to use Search Function in GMAT Club | Rules for Posting in QA forum | Writing Mathematical Formulas |Rules for Posting in VA forum | Request Expert's Reply ( VA Forum Only )
Manager
Manager
avatar
G
Joined: 30 May 2017
Posts: 137
Location: United States
Schools: HBS '21
GMAT 1: 690 Q50 V32
GRE 1: Q168 V164
GPA: 3.57
Re: Working together, printer A and printer B would finish the  [#permalink]

Show Tags

New post 10 Dec 2018, 13:23
[quote="gauravnagpal"]Working together, printer A and printer B would finish the task in 24 minutes. Printer A alone would finish the task in 60 minutes. How many pages does the task contain if printer B prints 5 pages a minute more than printer A ?

A. 600
B. 800
C. 1000
D. 1200
E. 1500


Total task = 60A
B = A+5
24(A+B) = 60A
24(A+A+5) = 60A
24(2A+5)=60A
48A+120= 60A
120=12A
A=10

Total tasks =60A = 600. Check the answers to confirm

Hence option A is the answer.
GMAT Club Bot
Re: Working together, printer A and printer B would finish the   [#permalink] 10 Dec 2018, 13:23

Go to page    1   2    Next  [ 23 posts ] 

Display posts from previous: Sort by

Working together, printer A and printer B would finish the

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  





Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne