Last visit was: 19 Nov 2025, 03:55 It is currently 19 Nov 2025, 03:55
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
noboru
Joined: 16 Jul 2009
Last visit: 15 Jan 2020
Posts: 539
Own Kudos:
9,464
 [157]
Given Kudos: 2
Schools:CBS
WE 1: 4 years (Consulting)
Posts: 539
Kudos: 9,464
 [157]
19
Kudos
Add Kudos
136
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,379
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,379
Kudos: 778,194
 [52]
25
Kudos
Add Kudos
27
Bookmarks
Bookmark this Post
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,379
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,379
Kudos: 778,194
 [38]
26
Kudos
Add Kudos
12
Bookmarks
Bookmark this Post
General Discussion
User avatar
AndreG
Joined: 22 Jun 2010
Last visit: 09 Dec 2010
Posts: 29
Own Kudos:
302
 [2]
Given Kudos: 10
Posts: 29
Kudos: 302
 [2]
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
Hi,

I dont get it sorry... I mean I understand your equations Bunuel, but I tried first with picking numbers:

If I pick -0.5 for x --> x^2-2x+A>0 will hold for A > -1.25

...

Where is my mistake??
User avatar
AndreG
Joined: 22 Jun 2010
Last visit: 09 Dec 2010
Posts: 29
Own Kudos:
Given Kudos: 10
Posts: 29
Kudos: 302
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Wow u rock man! :-)
That was very clear!

I especially like the +1 -1 trick

Posted from my mobile device
User avatar
cipher
Joined: 25 Jun 2009
Last visit: 04 Aug 2013
Posts: 130
Own Kudos:
347
 [2]
Given Kudos: 6
Posts: 130
Kudos: 347
 [2]
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hi Bunuel,

I really liked approached here but I still have some confusion,

Say for e.g if try to pick the numbers say x = -3

Then the equation in the first statement becomes

\(x^2 - 2x + A = 9 +6 +A = 15 + A >0\)

So now if we see A can have -ve and +ve values, isnt it ?

I am confused with this.

Please explain, whats wrong with this one.

Cheers
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,379
Own Kudos:
778,194
 [1]
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,379
Kudos: 778,194
 [1]
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
nitishmahajan
Hi Bunuel,

I really liked approached here but I still have some confusion,

Say for e.g if try to pick the numbers say x = -3

Then the equation in the first statement becomes

\(x^2 - 2x + A = 9 +6 +A = 15 + A >0\)

So now if we see A can have -ve and +ve values, isnt it ?

I am confused with this.

Please explain, whats wrong with this one.

Cheers

Not every question can be solved by number picking.

For all \(x-es\) means that no matter what \(x\) you pick \(x^2 - 2x + A\) must be positive. So it must be positive even for the lowest value of \(x^2 - 2x\) which is -1 --> so \(-1+A\) must be positive hence A must be more than 1.

Now again: if A>1 then for any \(x\) expression \(x^2 - 2x + A\) is positive.

But if A=-15 (or any other number less than 1) we can find some \(x-es\) for which expression \(x^2 - 2x + A\) is not positive, so theese values of A (values of \(A\leq{1}\)) are not valid.

Hope it's clear.
User avatar
cipher
Joined: 25 Jun 2009
Last visit: 04 Aug 2013
Posts: 130
Own Kudos:
347
 [1]
Given Kudos: 6
Posts: 130
Kudos: 347
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
nitishmahajan
Hi Bunuel,

I really liked approached here but I still have some confusion,

Say for e.g if try to pick the numbers say x = -3

Then the equation in the first statement becomes

\(x^2 - 2x + A = 9 +6 +A = 15 + A >0\)

So now if we see A can have -ve and +ve values, isnt it ?

I am confused with this.

Please explain, whats wrong with this one.

Cheers

Not every question can be solved by number picking.

For all \(x-es\) means that no matter what \(x\) you pick \(x^2 - 2x + A\) must be positive. So it must be positive even for the lowest value of \(x^2 - 2x\) which is -1 --> so \(-1+A\) must be positive hence A must be more than 1.

Now again: if A>1 then for any \(x\) expression \(x^2 - 2x + A\) is positive.

But if A=-15 (or any other number less than 1) we can find some \(x-es\) for which expression \(x^2 - 2x + A\) is not positive, so theese values of A (values of \(A\leq{1}\)) are not valid.

Hope it's clear.

Thanks for the reply Bunuel,

I understood the approach but the fact which is baffling me is that say the equation after subsituting value of x=-3 i.e 15+ A > 0 now we can have a value of A=-3 or may be -4 etc and still have the value of the equation in statement 1 as +ve

Am I thinking too much or just lacking some thing basic concept.

I appreciate your patience. :)
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,379
Own Kudos:
778,194
 [3]
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,379
Kudos: 778,194
 [3]
2
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
nitishmahajan
Bunuel
nitishmahajan
Hi Bunuel,

I really liked approached here but I still have some confusion,

Say for e.g if try to pick the numbers say x = -3

Then the equation in the first statement becomes

\(x^2 - 2x + A = 9 +6 +A = 15 + A >0\)

So now if we see A can have -ve and +ve values, isnt it ?

I am confused with this.

Please explain, whats wrong with this one.

Cheers

Not every question can be solved by number picking.

For all \(x-es\) means that no matter what \(x\) you pick \(x^2 - 2x + A\) must be positive. So it must be positive even for the lowest value of \(x^2 - 2x\) which is -1 --> so \(-1+A\) must be positive hence A must be more than 1.

Now again: if A>1 then for any \(x\) expression \(x^2 - 2x + A\) is positive.

But if A=-15 (or any other number less than 1) we can find some \(x-es\) for which expression \(x^2 - 2x + A\) is not positive, so theese values of A (values of \(A\leq{1}\)) are not valid.

Hope it's clear.

Thanks for the reply Bunuel,

I understood the approach but the fact which is baffling me is that say the equation after subsituting value of x=-3 i.e 15+ A > 0 now we can have a value of A=-3 or may be -4 etc and still have the value of the equation in statement 1 as +ve

Am I thinking too much or just lacking some thing basic concept.

I appreciate your patience. :)

I think you just don't understand one thing in statement (1): \(x^2-2x+A>0\) FOR ALL \(x-es\).

You say that if \(x=-3\) then \(A\) can be for example -10 (or any number more than -15) and \(x^2-2x+A\) will be positive, \(but\) if \(x=1\) does \(A=-10\) makes \(x^2-2x+A\) positive? NO!

So you should find such value of \(A\) (such range) for which \(x^2-2x+A\) is positive no matter what value of \(x\) you'll plug. And the way how to find this range is shown in my previous posts.
User avatar
IanStewart
User avatar
GMAT Tutor
Joined: 24 Jun 2008
Last visit: 18 Nov 2025
Posts: 4,145
Own Kudos:
Given Kudos: 99
Expert
Expert reply
Posts: 4,145
Kudos: 10,986
Kudos
Add Kudos
Bookmarks
Bookmark this Post
asmit123
Is A positive?

1. x^2 - 2x + A is +ve for all x
2. (A*x^2) + 1 is +ve for all x

I've posted about this question a couple of times. Many people solve this backwards and arrive at the wrong answer (those test takers relying on 'number picking' strategies almost always answer this question incorrectly). The important word in each of the two statements is 'all'. In Statement 1, x^2 - 2x + A is positive not just for some value of x; it must be positive for EVERY value of x. In particular, it's positive when x=0, so substituting x=0, we learn instantly that A is positive and Statement 1 is sufficient.

Statement 2 is also almost sufficient. It is only insufficient because of a technicality: it's possible that A=0.

So the answer is A.
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 18 Nov 2025
Posts: 16,267
Own Kudos:
76,989
 [7]
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,267
Kudos: 76,989
 [7]
4
Kudos
Add Kudos
3
Bookmarks
Bookmark this Post
rongali
Is A positive?

1) X^2-2X+A is positive for all X
2) AX^2 + 1 is positive for all X

given answer as A...but i thought it should be E..
source: hard problems from gmatclub tests number properties I

1) X^2-2X+A is positive for all X

For all values of X,\(X^2-2X+A > 0\)
This means, for X = 0, \(X^2-2X+A > 0\); for X = 1, \(X^2-2X+A > 0\); for X = -2, \(X^2-2X+A > 0\) etc etc etc

Let's put X = 0. \(0^2-2*0+A > 0\) should hold. Therefore, A > 0 should hold.
Sufficient.

2) AX^2 + 1 is positive for all X

For all X, \(AX^2 + 1 > 0\)
Here, A could be positive or A could be 0 (since, when A = 0, we get 1 > 0 which holds no matter what the value of X.)
Since A can be 0, we cannot say whether A is positive. Not Sufficient.

Answer A
User avatar
dianamao
Joined: 25 Jun 2011
Last visit: 14 Jul 2013
Posts: 23
Own Kudos:
Given Kudos: 7
Location: Sydney
Posts: 23
Kudos: 2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
noboru
Is A positive?

x^2-2x+A is positive for all x
Ax^2+1 is positive for all x


OA is A

(2) \(Ax^2+1\) is positive for all \(x\):

\(Ax^2+1>0\) --> when \(A\geq0\) this expression is positive for all \(x\). So \(A\) can be zero too.

Not sufficient.

Answer: A.

Why didn't you use the discriminant formula to assess statement 2?

I tried the discriminant rule and got a>0. I had 0-4a<0 which turns to a>0.

What am I missing here?

Thanks,
Diana
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,379
Own Kudos:
778,194
 [1]
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,379
Kudos: 778,194
 [1]
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
dianamao
Bunuel
noboru
Is A positive?

x^2-2x+A is positive for all x
Ax^2+1 is positive for all x


OA is A

(2) \(Ax^2+1\) is positive for all \(x\):

\(Ax^2+1>0\) --> when \(A\geq0\) this expression is positive for all \(x\). So \(A\) can be zero too.

Not sufficient.

Answer: A.

Why didn't you use the discriminant formula to assess statement 2?

I tried the discriminant rule and got a>0. I had 0-4a<0 which turns to a>0.

What am I missing here?

Thanks,
Diana

You are right: if we use the same approach for (2) then we'll get A>0 BUT if A=0 then Ax^2+1 won't be a quadratic function anymore. So this approach will work only if A doesn't equal to zero, but we can not eliminate this case and if A=0 then Ax^2+1=1 is also always positive. Hence Ax^2+1 is positive for A>0 (if we use quadratic function approach) as well as for A=0, so for \(A\geq0\).

Hope it's clear.
User avatar
imhimanshu
Joined: 07 Sep 2010
Last visit: 08 Nov 2013
Posts: 220
Own Kudos:
Given Kudos: 136
GMAT 1: 650 Q49 V30
Posts: 220
Kudos: 6,135
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel

Quadratic expression \(x^2-2x+A\) is a function of of upward parabola (it's upward as coefficient of \(x^2\) is positive). We are told that this expression is positive for all \(x\) --> \(x^2-2x+A>0\), which means that this parabola is "above" X-axis OR in other words parabola has no intersections with X-axis OR equation \(x^2-2x+A=0\) has no real roots.


Hi Bunuel,
How did you infer that the parabola would be above X axis by looking at the equation?? Pls explain.
Regards,
H
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,379
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,379
Kudos: 778,194
Kudos
Add Kudos
Bookmarks
Bookmark this Post
imhimanshu
Bunuel

Quadratic expression \(x^2-2x+A\) is a function of of upward parabola (it's upward as coefficient of \(x^2\) is positive). We are told that this expression is positive for all \(x\) --> \(x^2-2x+A>0\), which means that this parabola is "above" X-axis OR in other words parabola has no intersections with X-axis OR equation \(x^2-2x+A=0\) has no real roots.


Hi Bunuel,
How did you infer that the parabola would be above X axis by looking at the equation?? Pls explain.
Regards,
H

We have \(x^2-2x+A>0\) and told that this expression is positive for all x, which means that the parabola is above X-axis (otherwise it wouldn't be positive for all x).
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 18 Nov 2025
Posts: 16,267
Own Kudos:
76,989
 [4]
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,267
Kudos: 76,989
 [4]
4
Kudos
Add Kudos
Bookmarks
Bookmark this Post
VeritasPrepKarishma
rongali
Is A positive?

1) X^2-2X+A is positive for all X
2) AX^2 + 1 is positive for all X

given answer as A...but i thought it should be E..
source: hard problems from gmatclub tests number properties I

1) X^2-2X+A is positive for all X

For all values of X,\(X^2-2X+A > 0\)
This means, for X = 0, \(X^2-2X+A > 0\); for X = 1, \(X^2-2X+A > 0\); for X = -2, \(X^2-2X+A > 0\) etc etc etc

Let's put X = 0. \(0^2-2*0+A > 0\) should hold. Therefore, A > 0 should hold.
Sufficient.

2) AX^2 + 1 is positive for all X

For all X, \(AX^2 + 1 > 0\)
Here, A could be positive or A could be 0 (since, when A = 0, we get 1 > 0 which holds no matter what the value of X.)
Since A can be 0, we cannot say whether A is positive. Not Sufficient.

Answer A
Responding to a pm:
Quote:

I still did not understand your solution :(

x^2-2x+A>0
if we take the value 3 for example ,
9-6+A>0
3+A>0
which gives
A>(-)3
so A can assume -2,-1,0 and so on and we still get the overall value as +ve.
Can you help me understand what i am missing ?

Given that x^2-2x+A is always positive. No matter what the value of x, the value of A is such that this expression is always positive.
Whether x = ...-2, 0, 1, 4, 100..., the expression will always be positive.
So let's put a few values of x.

Put x = -2
(-2)^2-2(-2)+A > 0
A > -8

Put x = 0
0^2 - 2*0 + A > 0
A > 0

Put x = 1
1^2 - 2*1 + A > 0
A > 1

Put x = 3
3^2 - 2*3 + A > 0
A > -3

and so on...
So we see that A must be greater than -8, it should also be greater than -3, it should also be greater than 0 and it should also be greater than 1. So what values do you think A can take? Values which are greater than all these values i.e. values like 8, 10 etc. In any case, we are asked whether A is positive and we know that it must be greater than 1. Hence, we know that A must be positive. Sufficient.
avatar
archit
Joined: 07 Aug 2012
Last visit: 16 Jun 2018
Posts: 9
Own Kudos:
Given Kudos: 21
Posts: 9
Kudos: 3
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Dear Brunel

Please explain last line ....

We have (x^2-2x)+A>0 for all x-es. The sum of 2 quantities (x^2-2x and A) is positive for all x-es. So for the least value of x^2-2x, A must make the whole expression positive.

So what is the least value of x^2-2x? The least value of quadratic expression ax^2+bx+c is when x=-\frac{b}{2a}, so in our case the least value of x^2-2x is when x=-\frac{-2}{2}=1 --> x^2-2x=-1 --> -1+A>0 --> A>1. ....Want to know how +1 changes to -1 .....please explain
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,379
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,379
Kudos: 778,194
Kudos
Add Kudos
Bookmarks
Bookmark this Post
archit
Dear Brunel

Please explain last line ....

We have (x^2-2x)+A>0 for all x-es. The sum of 2 quantities (x^2-2x and A) is positive for all x-es. So for the least value of x^2-2x, A must make the whole expression positive.

So what is the least value of x^2-2x? The least value of quadratic expression ax^2+bx+c is when x=-\frac{b}{2a}, so in our case the least value of x^2-2x is when x=-\frac{-2}{2}=1 --> x^2-2x=-1 --> -1+A>0 --> A>1. ....Want to know how +1 changes to -1 .....please explain

You mean to know how we get A>1 from -1+A>0?

Add 1 to both sides of -1+A>0 --> A>1.

Hope it's clear.
User avatar
Raihanuddin
Joined: 11 Sep 2013
Last visit: 29 Aug 2021
Posts: 90
Own Kudos:
Given Kudos: 381
Concentration: Finance, Finance
Posts: 90
Kudos: 687
Kudos
Add Kudos
Bookmarks
Bookmark this Post
there are many hard data sufficiency questions? To get over 700 in GMAT at least how many hard data sufficiency questions do we have to answer? I have a lot of problems with hard and tricky DS questions. I always go close to the answer but finally make mistake in hard DS by not noticing one or two things. Can anyone help me please?
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 18 Nov 2025
Posts: 16,267
Own Kudos:
76,989
 [1]
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,267
Kudos: 76,989
 [1]
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
Raihanuddin
there are many hard data sufficiency questions? To get over 700 in GMAT at least how many hard data sufficiency questions do we have to answer? I have a lot of problems with hard and tricky DS questions. I always go close to the answer but finally make mistake in hard DS by not noticing one or two things. Can anyone help me please?

Half or more than half of the Quant section consists of DS questions. To get over 700, you need to be able to handle 700 level questions of DS as well. DS questions have a lot of traps and it pays to be aware of them. It's a must have if you are facing problems in DS but are relatively comfortable in PS because then you have DS format issues and need a book which addresses those specifically.
 1   2   
Moderators:
Math Expert
105379 posts
496 posts