Official explanation from Manhattan GMATThe easiest way to work through this problem is to use weighted averages. If alloy Z were entirely composed of alloy X, it would be 25% copper by weight. Similarly, if alloy Z were composed entirely of alloy Y, it would be 65% copper by weight. As you shift the proportion of X to Y, you change the percent of the weight that is copper, but you know that the value will always be between 25% and 65%.
As X becomes a higher percentage of the weight, the average gets closer to 25. Similarly, as Y becomes a higher percentage of the weight, the average gets closer to 65. Imagine 25 and 65 as two endpoints of a line segment. If the X and Y alloys are each 50% of alloy Z, then the average ends up exactly halfway between 25% and 65%. In this case, copper would be 45% of alloy Z. However, we don’t have both 50% and 45% as answer choices.
Similarly, if X is 25% of Z, and Y is 75% of Z, we can think of the copper composition percent as being 75% of the distance from X to Y. 65 – 25 = 40, so the copper percent is 0.75 × 40 = 30 units closer to Y. That means that Alloy Z would be 55% copper. However, we don’t have both 25% and 55% as answer choices.
Keep trying! If X were 75% of the total weight, the average would be 75% of the distance from Y to X. In this case, the percent copper by weight would be 65 – 30 = 35. These numbers actually match options we have in the table. Alloy X is 75% of the weight of alloy Z, and copper is 35% of the final weight. No other possible pairs work in the table.
Column 1: The correct answer is F (75%).
Column 2: The correct answer is B (35%).