Schachfreizeit
sleekmover
The fastest way:
we know 560 is an integer (no fraction) and hence probability of sides of rectangle being integer is quite high
200 is diagonal - recognizing it from pythagorean patterns it seems to be a multiple of 10 (10 - 8 - 6)
= 10 * 2 * 10
hence other sides of the pythagorean triplet will be:
8 * 2 * 10
and
6 * 2 * 10
= 160
= 120
bingo - (160 + 120 ) * 2 = 560
hence area = 160 * 120 = 19200
"200 is diagonal - recognizing it from pythagorean patterns it seems to be a multiple of 10 (10 - 8 - 6)
= 10 * 2 * 10"
I don't quite understand this, can someone explain it to me?
Hi Schachfreizeit,
It's important to remember that nothing about a GMAT question is ever 'random' - the wording and numbers/data are always carefully chosen. Thus, you can sometimes use the 'design' of a prompt to your advantage and spot the built-in patterns that are often there.
Here, notice how ALL of the numbers are relatively 'nice', round numbers - even the diagonal is a nice number (and that doesn't happen very often when dealing with rectangles).... Since the answer choices are also round numbers, it's likely that the triangles that are 'hidden' in this rectangle are based on one of the common right-triangle patterns (in this case, the 3/4/5 - since 200 is a multiple of 5).
Using that knowledge to our advantage, IF we had a 3/4/5 and the diagonal was 200, then that would be '40 times' 5... so the other two sides would be 40 times 4 and 40 times 3: 160 and 120. With those two side lengths, we'd have a perimeter of 2(160) + 2(120) = 560... and that is an exact MATCH for what we were told, so this MUST be the situation that we're dealing with.
At this point, the area can be calculated easily enough: (L)(W) = (160)(120) = the answer
GMAT assassins aren't born, they're made,
Rich
Contact Rich at: Rich.C@empowergmat.com