Last visit was: 19 Nov 2025, 12:45 It is currently 19 Nov 2025, 12:45
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
dreambeliever
Joined: 24 Nov 2010
Last visit: 20 Jun 2013
Posts: 118
Own Kudos:
291
 [2]
Given Kudos: 7
Location: United States (CA)
Concentration: Technology, Entrepreneurship
Posts: 118
Kudos: 291
 [2]
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
User avatar
IanStewart
User avatar
GMAT Tutor
Joined: 24 Jun 2008
Last visit: 18 Nov 2025
Posts: 4,145
Own Kudos:
Given Kudos: 99
Expert
Expert reply
Posts: 4,145
Kudos: 10,989
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
dreambeliever
Joined: 24 Nov 2010
Last visit: 20 Jun 2013
Posts: 118
Own Kudos:
Given Kudos: 7
Location: United States (CA)
Concentration: Technology, Entrepreneurship
Posts: 118
Kudos: 291
Kudos
Add Kudos
Bookmarks
Bookmark this Post
avatar
brobeedle
Joined: 01 Aug 2013
Last visit: 15 Feb 2022
Posts: 93
Own Kudos:
Given Kudos: 10
Schools: LBS '18 (S)
Schools: LBS '18 (S)
Posts: 93
Kudos: 38
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hi Guys, could not find the solution to this anywhere on the forum: Please help:

A team of researchers measured each of ten subjectsíreaction time to a certain stimulus and calculated the mean, median, and standard deviation of the measurements. If none of the reaction times were identical and an eleventh data point were added that was equal to the mean of the initial group of ten, which of these three statistics would change?
(A) The median only
(B) The standard deviation only
(C) The mean and the median
(D) The mean and the standard deviation
(E) The median and the standard deviation

The answer as per the hacks solution set is B - but I don't agree because:

1. if you add a term that is equal to the mean of the set, how would it change the SD? since SD is the squared distance from the mean, adding a term that is equal to the mean should not change the SD, right?

2. if you add a term that is equal to the mean of the set, it shouldn't change the mean either right? I tried this by using the mean of 2,3,4 and then 2,3,3,4

3. The median, could change, because with 11 terms, the median should become the 6th term; previously it was the average of the 5th and 6th term?

Please let me know if I am right, or if the hacks answer (B) is correct?
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,343
Kudos
Add Kudos
Bookmarks
Bookmark this Post
brobeedle
Hi Guys, could not find the solution to this anywhere on the forum: Please help:

A team of researchers measured each of ten subjectsíreaction time to a certain stimulus and calculated the mean, median, and standard deviation of the measurements. If none of the reaction times were identical and an eleventh data point were added that was equal to the mean of the initial group of ten, which of these three statistics would change?
(A) The median only
(B) The standard deviation only
(C) The mean and the median
(D) The mean and the standard deviation
(E) The median and the standard deviation

The answer as per the hacks solution set is B - but I don't agree because:

1. if you add a term that is equal to the mean of the set, how would it change the SD? since SD is the squared distance from the mean, adding a term that is equal to the mean should not change the SD, right?

2. if you add a term that is equal to the mean of the set, it shouldn't change the mean either right? I tried this by using the mean of 2,3,4 and then 2,3,3,4

3. The median, could change, because with 11 terms, the median should become the 6th term; previously it was the average of the 5th and 6th term?

Please let me know if I am right, or if the hacks answer (B) is correct?

Merging similar topics. Please refer to the discussion above.
User avatar
farful
Joined: 09 Sep 2013
Last visit: 24 Nov 2020
Posts: 412
Own Kudos:
Given Kudos: 155
Status:Alum
Location: United States
GMAT 1: 730 Q52 V37
GMAT 1: 730 Q52 V37
Posts: 412
Kudos: 413
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Quote:
1. if you add a term that is equal to the mean of the set, how would it change the SD? since SD is the squared distance from the mean, adding a term that is equal to the mean should not change the SD, right?
Standard deviation is the squareroot of the sum of squared distance from the mean divided by the number of elements in the set. Because we have 11 data points instead of 10, we divide the sum of squared distances by 11 instead of 10. This changes the standard deviation.

Quote:
2. if you add a term that is equal to the mean of the set, it shouldn't change the mean either right? I tried this by using the mean of 2,3,4 and then 2,3,3,4
Correct, it does not change the mean.

Quote:
3. The median, could change, because with 11 terms, the median should become the 6th term; previously it was the average of the 5th and 6th term?
Correct, the median could change.

This is a poor question as it asks what would change. Either the standard deviation will change, or both the standard deviation and median will change.
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,343
Kudos
Add Kudos
Bookmarks
Bookmark this Post
brobeedle
Hi Guys, could not find the solution to this anywhere on the forum: Please help:

A team of researchers measured each of ten subjectsíreaction time to a certain stimulus and calculated the mean, median, and standard deviation of the measurements. If none of the reaction times were identical and an eleventh data point were added that was equal to the mean of the initial group of ten, which of these three statistics would change?
(A) The median only
(B) The standard deviation only
(C) The mean and the median
(D) The mean and the standard deviation
(E) The median and the standard deviation

The answer as per the hacks solution set is B - but I don't agree because:

1. if you add a term that is equal to the mean of the set, how would it change the SD? since SD is the squared distance from the mean, adding a term that is equal to the mean should not change the SD, right?

2. if you add a term that is equal to the mean of the set, it shouldn't change the mean either right? I tried this by using the mean of 2,3,4 and then 2,3,3,4

3. The median, could change, because with 11 terms, the median should become the 6th term; previously it was the average of the 5th and 6th term?

Please let me know if I am right, or if the hacks answer (B) is correct?

As for your questions:

1. The standard deviation will decrease.

The standard deviation of a set shows how much variation there is from the mean, how widespread a given set is. So, a low standard deviation indicates that the data points tend to be very close to the mean, whereas high standard deviation indicates that the data are spread out over a large range of values.

So, if you add a value to a set equal to the set's current mean, the data will be less widespread, hence the SD will decrease (if the SD wasn't 0 for the initial set).

2. The mean will not change.

3. The median may or may not change.

So, as you see, the question is flawed and you can ignore it.
User avatar
mittalg
Joined: 17 May 2014
Last visit: 07 Apr 2015
Posts: 28
Own Kudos:
Given Kudos: 3
Posts: 28
Kudos: 112
Kudos
Add Kudos
Bookmarks
Bookmark this Post
brobeedle
Hi Guys, could not find the solution to this anywhere on the forum: Please help:

A team of researchers measured each of ten subjectsíreaction time to a certain stimulus and calculated the mean, median, and standard deviation of the measurements. If none of the reaction times were identical and an eleventh data point were added that was equal to the mean of the initial group of ten, which of these three statistics would change?
(A) The median only
(B) The standard deviation only
(C) The mean and the median
(D) The mean and the standard deviation
(E) The median and the standard deviation

The answer as per the hacks solution set is B - but I don't agree because:

1. if you add a term that is equal to the mean of the set, how would it change the SD? since SD is the squared distance from the mean, adding a term that is equal to the mean should not change the SD, right?

2. if you add a term that is equal to the mean of the set, it shouldn't change the mean either right? I tried this by using the mean of 2,3,4 and then 2,3,3,4

3. The median, could change, because with 11 terms, the median should become the 6th term; previously it was the average of the 5th and 6th term?

Please let me know if I am right, or if the hacks answer (B) is correct?

r

If the mean for first 10 terms in a, and the term added is a again, the new mean is (10a + a)/11 =a which means the mean remains same.

In case median is not equal to mean for the initial 10 numbers, the new median will be this number we added. Hence, median will change

The SD will also change as the number of terms increases from 10 to 11. Please note that the sum of squares will remain the same though. SD will therefore decrease.

Thus, the answer is E).

The answer can also be reached by taking 10 values as 1,2,3,4,5,6,7,8,9,12

The mean will be 5.7

Now, if a 11th term equal to mean is added, we get new mean again as 5.5

Median of 1,2,3,4,5,6,7,8,9,12 will be 5.5 but median of 1,2,3,4,5,5.7,6,7,8,9,12 is 5.7 which is different from earlier median

In case of SD we have to find sum of (xi - mean)^2. This sum is same is both cases as 11th term is equal to the mean and will give us 0. But N is 10 in first case, and 11 in second. Thus, SD will also change.

I hope it is clear now.

Kudos if you like the response!!!
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,343
Kudos
Add Kudos
Bookmarks
Bookmark this Post
mittalg
brobeedle
Hi Guys, could not find the solution to this anywhere on the forum: Please help:

A team of researchers measured each of ten subjectsíreaction time to a certain stimulus and calculated the mean, median, and standard deviation of the measurements. If none of the reaction times were identical and an eleventh data point were added that was equal to the mean of the initial group of ten, which of these three statistics would change?
(A) The median only
(B) The standard deviation only
(C) The mean and the median
(D) The mean and the standard deviation
(E) The median and the standard deviation

The answer as per the hacks solution set is B - but I don't agree because:

1. if you add a term that is equal to the mean of the set, how would it change the SD? since SD is the squared distance from the mean, adding a term that is equal to the mean should not change the SD, right?

2. if you add a term that is equal to the mean of the set, it shouldn't change the mean either right? I tried this by using the mean of 2,3,4 and then 2,3,3,4

3. The median, could change, because with 11 terms, the median should become the 6th term; previously it was the average of the 5th and 6th term?

Please let me know if I am right, or if the hacks answer (B) is correct?

r

If the mean for first 10 terms in a, and the term added is a again, the new mean is (10a + a)/11 =a which means the mean remains same.

In case median is not equal to mean for the initial 10 numbers, the new median will be this number we added. Hence, median will change

The SD will also change as the number of terms increases from 10 to 11. Please note that the sum of squares will remain the same though. SD will therefore decrease.

Thus, the answer is E).

The answer can also be reached by taking 10 values as 1,2,3,4,5,6,7,8,9,12

The mean will be 5.7

Now, if a 11th term equal to mean is added, we get new mean again as 5.5

Median of 1,2,3,4,5,6,7,8,9,12 will be 5.5 but median of 1,2,3,4,5,5.7,6,7,8,9,12 is 5.7 which is different from earlier median

In case of SD we have to find sum of (xi - mean)^2. This sum is same is both cases as 11th term is equal to the mean and will give us 0. But N is 10 in first case, and 11 in second. Thus, SD will also change.

I hope it is clear now.

Kudos if you like the response!!!

The median could change but it does not mean that it will change in all cases.

If the set is {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, then adding a new element equal to the mean, which is 5.5, will not change the median.
avatar
brobeedle
Joined: 01 Aug 2013
Last visit: 15 Feb 2022
Posts: 93
Own Kudos:
Given Kudos: 10
Schools: LBS '18 (S)
Schools: LBS '18 (S)
Posts: 93
Kudos: 38
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Thanks for the help guys!
User avatar
bumpbot
User avatar
Non-Human User
Joined: 09 Sep 2013
Last visit: 04 Jan 2021
Posts: 38,588
Own Kudos:
Posts: 38,588
Kudos: 1,079
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.

Archived Topic
Hi there,
This topic has been closed and archived due to inactivity or violation of community quality standards. No more replies are possible here.
Where to now? Join ongoing discussions on thousands of quality questions in our Problem Solving (PS) Forum
Still interested in this question? Check out the "Best Topics" block above for a better discussion on this exact question, as well as several more related questions.
Thank you for understanding, and happy exploring!
Moderator:
Math Expert
105390 posts