It is currently 23 Sep 2017, 06:16

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

A term an is called a “cusp” of a sequence if an is an integer but an+

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Expert Post
1 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 41695

Kudos [?]: 124575 [1], given: 12079

A term an is called a “cusp” of a sequence if an is an integer but an+ [#permalink]

Show Tags

New post 23 Jan 2015, 07:25
1
This post received
KUDOS
Expert's post
14
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  95% (hard)

Question Stats:

51% (01:58) correct 49% (01:58) wrong based on 191 sessions

HideShow timer Statistics

A term an is called a “cusp” of a sequence if \(a_n\) is an integer but \(a_{n+1}\) is not an integer. If \(a_5\) is a cusp of the sequence a1,a2,…,an,… in which \(a_1=k\) and \(a_n=-2\frac{(a_{n-1})}{3}\) for all n>1, then k could be equal to:

A. 3
B. 16
C. 108
D. 162
E. 243

Kudos for a correct solution.
[Reveal] Spoiler: OA

_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 124575 [1], given: 12079

Expert Post
Math Forum Moderator
avatar
P
Joined: 02 Aug 2009
Posts: 4912

Kudos [?]: 5245 [0], given: 112

Re: A term an is called a “cusp” of a sequence if an is an integer but an+ [#permalink]

Show Tags

New post 23 Jan 2015, 08:13
Expert's post
1
This post was
BOOKMARKED
ans E 243....a5 is int and a6 is not int so a5 should be div by 3 and a6 not therefore 3^5...
_________________

Absolute modulus :http://gmatclub.com/forum/absolute-modulus-a-better-understanding-210849.html#p1622372
Combination of similar and dissimilar things : http://gmatclub.com/forum/topic215915.html

Kudos [?]: 5245 [0], given: 112

Manager
Manager
avatar
Joined: 13 Dec 2013
Posts: 59

Kudos [?]: 25 [0], given: 34

Location: Iran (Islamic Republic of)
GMAT ToolKit User
Re: A term an is called a “cusp” of a sequence if an is an integer but an+ [#permalink]

Show Tags

New post 24 Jan 2015, 00:46
THE CORRECT ANSWER IS B NOT E....

WE are told that in a sequence we have first term a1 equal to k and we are given a formula to obtain each of the progression based on that formula

we are given an=-2 (an-1)/3 for n>1 based on a1 is k so we should have a2= -2*k/3

TO obtain a3 , we should replace a2 in the formula and we get a3= -2 *(-2*k/3) /3 so we can get a3=4*k/9

in the same way we can obtain a4 , a4 = -2 * (4k/9)/3 = -8k/27 and for a5 we replace a4 in the formula and get : -2* (-8k/27)/3 = 16k/81


so a5 is : 16k/81 in this point we can see that k is an integer that MUST divisible by 16 and in the given options ONLY OPTION B is the OPTION which is DIVISIBLE BY 16


SO ,the correct ans IS B :lol: :lol: :lol: :lol:

Kudos [?]: 25 [0], given: 34

Senior Manager
Senior Manager
avatar
Joined: 27 Oct 2013
Posts: 254

Kudos [?]: 125 [0], given: 79

Location: India
Concentration: General Management, Technology
GMAT Date: 03-02-2015
GPA: 3.88
Re: A term an is called a “cusp” of a sequence if an is an integer but an+ [#permalink]

Show Tags

New post 24 Jan 2015, 01:54
1
This post was
BOOKMARKED
Here we go----

a1 = K

So to be a "cusp" of a sequence

a2 must not be an integer....


So, a2 = -2/3 * ( a1 )

a2 = -2/3 * ( K )

Substitute values for K from the options

A. 3 (integer)
B. 16 (not an integer)
C. 108 (integer)
D. 162 (integer)
E. 243 (integer)


Option B is correct

Kudos [?]: 125 [0], given: 79

Expert Post
Math Forum Moderator
avatar
P
Joined: 02 Aug 2009
Posts: 4912

Kudos [?]: 5245 [0], given: 112

Re: A term an is called a “cusp” of a sequence if an is an integer but an+ [#permalink]

Show Tags

New post 24 Jan 2015, 03:54
mehrdadtaheri92 wrote:
THE CORRECT ANSWER IS B NOT E....

WE are told that in a sequence we have first term a1 equal to k and we are given a formula to obtain each of the progression based on that formula

we are given an=-2 (an-1)/3 for n>1 based on a1 is k so we should have a2= -2*k/3

TO obtain a3 , we should replace a2 in the formula and we get a3= -2 *(-2*k/3) /3 so we can get a3=4*k/9

in the same way we can obtain a4 , a4 = -2 * (4k/9)/3 = -8k/27 and for a5 we replace a4 in the formula and get : -2* (-8k/27)/3 = 16k/81


so a5 is : 16k/81 in this point we can see that k is an integer that MUST divisible by 16 and in the given options ONLY OPTION B is the OPTION which is DIVISIBLE BY 16


SO ,the correct ans IS B :lol: :lol: :lol: :lol:



how can 16k/81 be an integer if k is div by 16.. a5 will be an int if it is div by 81
_________________

Absolute modulus :http://gmatclub.com/forum/absolute-modulus-a-better-understanding-210849.html#p1622372
Combination of similar and dissimilar things : http://gmatclub.com/forum/topic215915.html

Kudos [?]: 5245 [0], given: 112

Manager
Manager
avatar
Joined: 13 Dec 2013
Posts: 59

Kudos [?]: 25 [0], given: 34

Location: Iran (Islamic Republic of)
GMAT ToolKit User
Re: A term an is called a “cusp” of a sequence if an is an integer but an+ [#permalink]

Show Tags

New post 24 Jan 2015, 04:41
Dear Chatan 2 U,

As the problem says a1 is integer so a2 is not so a3 is integer and so on .therefore a5 is integer too.

if we consider X as integer, and placed it infornt of a5 we reach to this equation:

X= 16k/81 and in this case for finding k we change the equation to K= 81*X/16 in this state we must obtain K as integer and as 81 is not divisible by 16 so in order to K to be integer so X must be multiple of 16 and we see here ONLY option B is MULTIPLE of 16 ,SO ans is B

Kudos [?]: 25 [0], given: 34

Expert Post
Math Forum Moderator
avatar
P
Joined: 02 Aug 2009
Posts: 4912

Kudos [?]: 5245 [0], given: 112

Re: A term an is called a “cusp” of a sequence if an is an integer but an+ [#permalink]

Show Tags

New post 24 Jan 2015, 05:45
mehrdadtaheri92 wrote:
Dear Chatan 2 U,

As the problem says a1 is integer so a2 is not so a3 is integer and so on .therefore a5 is integer too.

if we consider X as integer, and placed it infornt of a5 we reach to this equation:

X= 16k/81 and in this case for finding k we change the equation to K= 81*X/16 in this state we must obtain K as integer and as 81 is not divisible by 16 so in order to K to be integer so X must be multiple of 16 and we see here ONLY option B is MULTIPLE of 16 ,SO ans is B


hi,
i again feel what he means is that at a(n), the value changes from integer to non integer..
second point, a5 has to be integer so k being integer does not solve the purpose .
a5=16*k/81
if a1=k = 16 then a5=16*16/81, which is not integer
_________________

Absolute modulus :http://gmatclub.com/forum/absolute-modulus-a-better-understanding-210849.html#p1622372
Combination of similar and dissimilar things : http://gmatclub.com/forum/topic215915.html

Kudos [?]: 5245 [0], given: 112

Expert Post
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 41695

Kudos [?]: 124575 [0], given: 12079

Re: A term an is called a “cusp” of a sequence if an is an integer but an+ [#permalink]

Show Tags

New post 26 Jan 2015, 04:21
Expert's post
4
This post was
BOOKMARKED
Bunuel wrote:
A term an is called a “cusp” of a sequence if \(a_n\) is an integer but \(a_{n+1}\) is not an integer. If \(a_5\) is a cusp of the sequence a1,a2,…,an,… in which \(a_1=k\) and \(a_n=-2\frac{(a_n-1)}{3}\) for all n>1, then k could be equal to:

A. 3
B. 16
C. 108
D. 162
E. 243

Kudos for a correct solution.


VERITAS PREP OFFICIAL SOLUTION:

As with many sequence problems, the wording of this question is designed to be horribly abstract. Let’s just focus on the fact that a5 is an integer but a6 is not an integer.

Putting the sequence into words can help. What do we do to find the next value? We take the previous value and multiply by −2/3. Or even more colloquially, we:

First, flip the sign of the previous one. Second, multiply it by two. Third, divide it by three.

So the second term will be −2/3 times the first one. The third term will be −2/3 times the second one. And so on.

Now, keep in mind that our goal is to find a value of k that will be an integer by the fifth term but not an integer by the sixth term. And this can make your job a lot easier. Positive vs. negative won’t have any bearing on whether a term is an integer or not, and the major operation that will control that will be division. Consider k = 6 as an example (since there are 2s and 3s all over this problem let’s pick a number that’s divisible by both). The first term would be 6, then the second term would be −2/3(6) or -4. Then the third term won’t be an integer, as the “divide by 3” part of the operation will leave you with a decimal.

So when you see that the 5th term of the sequence is going to be:

(−2/3)(−2/3)(−2/3)(−2/3)k, and will be an integer, but that the 6th term of the sequence will be:

(−2/3)(−2/3)(−2/3)(−2/3)(−2/3)k, and will not be an integer, you should see that the real question is “how many times can we evenly divide k by 3?”.

The answer, then, is 4, as it’s that fifth iteration of −2/3 that takes us from “integer” to “noninteger” status.

So kmust contain exactly four 3s, since 81=3^4 and since a5 contains no 3s (recall that a5 was an integer but not a multiple of 3).

Now, factor the answer choices. 3 is already prime factored, but it’s far short of four 3s, so it’s incorrect. 16=2^4; this has no 3s at all, so it’s also incorrect. 108=2^2*3^3; this answer is closer, but it’s still one 3 short, so it’s incorrect too. 162=(2)3^4; that’s the four 3s we need, so this is the correct answer. Finally, 243=3^5; that’s one 3 too many – we needed exactly four – so this is also incorrect.

Answer: D.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 124575 [0], given: 12079

Expert Post
Math Forum Moderator
avatar
P
Joined: 02 Aug 2009
Posts: 4912

Kudos [?]: 5245 [0], given: 112

Re: A term an is called a “cusp” of a sequence if an is an integer but an+ [#permalink]

Show Tags

New post 26 Jan 2015, 04:26
thanks bunuel..
i was looking for 81 in ans and then settled for next power of 3 ie 243..
how could i miss out 162, a multiple of 81..
_________________

Absolute modulus :http://gmatclub.com/forum/absolute-modulus-a-better-understanding-210849.html#p1622372
Combination of similar and dissimilar things : http://gmatclub.com/forum/topic215915.html

Kudos [?]: 5245 [0], given: 112

Intern
Intern
avatar
Joined: 03 Aug 2014
Posts: 20

Kudos [?]: [0], given: 18

Re: A term an is called a “cusp” of a sequence if an is an integer but an+ [#permalink]

Show Tags

New post 29 Apr 2015, 19:36
is the portion in brackets An - 1 or A(n-1)? It looks like the former.

Kudos [?]: [0], given: 18

Intern
Intern
avatar
Joined: 26 Apr 2015
Posts: 4

Kudos [?]: 1 [0], given: 4

Re: A term an is called a “cusp” of a sequence if an is an integer but an+ [#permalink]

Show Tags

New post 29 Apr 2015, 19:49
Bunnel Great explanation

Kudos [?]: 1 [0], given: 4

GMAT Club Legend
GMAT Club Legend
User avatar
Joined: 09 Sep 2013
Posts: 17615

Kudos [?]: 271 [0], given: 0

Premium Member
Re: A term an is called a “cusp” of a sequence if an is an integer but an+ [#permalink]

Show Tags

New post 24 May 2016, 20:08
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

GMAT Books | GMAT Club Tests | Best Prices on GMAT Courses | GMAT Mobile App | Math Resources | Verbal Resources

Kudos [?]: 271 [0], given: 0

GMAT Club Legend
GMAT Club Legend
User avatar
Joined: 09 Sep 2013
Posts: 17615

Kudos [?]: 271 [0], given: 0

Premium Member
Re: A term an is called a “cusp” of a sequence if an is an integer but an+ [#permalink]

Show Tags

New post 11 Jun 2017, 07:02
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

GMAT Books | GMAT Club Tests | Best Prices on GMAT Courses | GMAT Mobile App | Math Resources | Verbal Resources

Kudos [?]: 271 [0], given: 0

1 KUDOS received
Intern
Intern
avatar
B
Joined: 29 May 2017
Posts: 11

Kudos [?]: 1 [1], given: 6

Re: A term an is called a “cusp” of a sequence if an is an integer but an+ [#permalink]

Show Tags

New post 13 Jun 2017, 08:48
1
This post received
KUDOS
hi. the original post shows \(a_n=a_n - 1\). but in reality it is \(a_{n-1}\). not sure if my point is coming across as i am new to writing fractions etc on the forum

Kudos [?]: 1 [1], given: 6

Expert Post
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 41695

Kudos [?]: 124575 [0], given: 12079

Re: A term an is called a “cusp” of a sequence if an is an integer but an+ [#permalink]

Show Tags

New post 13 Jun 2017, 09:02

Kudos [?]: 124575 [0], given: 12079

1 KUDOS received
Intern
Intern
avatar
Joined: 17 Jul 2017
Posts: 17

Kudos [?]: 1 [1], given: 4

A term an is called a “cusp” of a sequence if an is an integer but an+ [#permalink]

Show Tags

New post 03 Aug 2017, 11:35
1
This post received
KUDOS
I think if you get this right you're on the cusp of greatness. The question isn't too difficult once you understand what they are asking.

So we know
A1=K
A2 therefore =-2k/3 Because A2=-2(k)/3
A3= 4k/9 because A3 = -2(a2)/3 = -2 ((2k/3)/3) which equals 4k/9
A4 = -8k/27
A5 = 16K/81
A6 = -32K/243

So now we need to look at the solutions. Breaking the numbers into prime factorization is the trick for this part.

1) 3 well we can see that A5 =(16*3)/81 is not an integer
2) 16 is wrong as A5 = (2^4) * (2^4) / (3^4). Well (2^8) /(3^3) is clearly not an integer
3) 108 is wrong as A5 = [(2^4)* (9X13)] / 9^2 . Again we only have one power of 9 on the top and 2 on the bottom. Clearly not an integer
4) 162 = (9^2)* (2^4) / 9^2 this will be an integer

and A6 = -[2^5 * (9^2) *2)] / (9^2 X 3). Notice we have an extra 3 on the bottom therefore this isn't an integer.

5) We can solve E for fun
A5= [(2^5) * (9^2)*3] / [(9^2] Clearly an integer
A6= 243=(9^2) X 3 . so [(2^5) X (9^2 )*3] / [(9^2) X 3] Clearly an integer


Correct answer D

Last edited by Samuelboyle96 on 24 Aug 2017, 10:41, edited 1 time in total.

Kudos [?]: 1 [1], given: 4

Intern
Intern
avatar
S
Joined: 08 Mar 2016
Posts: 39

Kudos [?]: 5 [0], given: 13

CAT Tests
Re: A term an is called a “cusp” of a sequence if an is an integer but an+ [#permalink]

Show Tags

New post 04 Aug 2017, 03:51
Bunuel wrote:
Bunuel wrote:
A term an is called a “cusp” of a sequence if \(a_n\) is an integer but \(a_{n+1}\) is not an integer. If \(a_5\) is a cusp of the sequence a1,a2,…,an,… in which \(a_1=k\) and \(a_n=-2\frac{(a_n-1)}{3}\) for all n>1, then k could be equal to:

A. 3
B. 16
C. 108
D. 162
E. 243

Kudos for a correct solution.


VERITAS PREP OFFICIAL SOLUTION:

As with many sequence problems, the wording of this question is designed to be horribly abstract. Let’s just focus on the fact that a5 is an integer but a6 is not an integer.

Putting the sequence into words can help. What do we do to find the next value? We take the previous value and multiply by −2/3. Or even more colloquially, we:

First, flip the sign of the previous one. Second, multiply it by two. Third, divide it by three.

So the second term will be −2/3 times the first one. The third term will be −2/3 times the second one. And so on.

Now, keep in mind that our goal is to find a value of k that will be an integer by the fifth term but not an integer by the sixth term. And this can make your job a lot easier. Positive vs. negative won’t have any bearing on whether a term is an integer or not, and the major operation that will control that will be division. Consider k = 6 as an example (since there are 2s and 3s all over this problem let’s pick a number that’s divisible by both). The first term would be 6, then the second term would be −2/3(6) or -4. Then the third term won’t be an integer, as the “divide by 3” part of the operation will leave you with a decimal.

So when you see that the 5th term of the sequence is going to be:

(−2/3)(−2/3)(−2/3)(−2/3)k, and will be an integer, but that the 6th term of the sequence will be:

(−2/3)(−2/3)(−2/3)(−2/3)(−2/3)k, and will not be an integer, you should see that the real question is “how many times can we evenly divide k by 3?”.

The answer, then, is 4, as it’s that fifth iteration of −2/3 that takes us from “integer” to “noninteger” status.

So kmust contain exactly four 3s, since 81=3^4 and since a5 contains no 3s (recall that a5 was an integer but not a multiple of 3).

Now, factor the answer choices. 3 is already prime factored, but it’s far short of four 3s, so it’s incorrect. 16=2^4; this has no 3s at all, so it’s also incorrect. 108=2^2*3^3; this answer is closer, but it’s still one 3 short, so it’s incorrect too. 162=(2)3^4; that’s the four 3s we need, so this is the correct answer. Finally, 243=3^5; that’s one 3 too many – we needed exactly four – so this is also incorrect.

Answer: D.


Missed the part when you say "since a5 contains no 3s (recall that a5 was an integer but not a multiple of 3)."

why do we say that a5 contains no 3's ?

Kudos [?]: 5 [0], given: 13

Intern
Intern
avatar
Joined: 17 Jul 2017
Posts: 17

Kudos [?]: 1 [0], given: 4

Re: A term an is called a “cusp” of a sequence if an is an integer but an+ [#permalink]

Show Tags

New post 04 Aug 2017, 06:45
SOUMYAJIT_ wrote:
Bunuel wrote:
Bunuel wrote:
A term an is called a “cusp” of a sequence if \(a_n\) is an integer but \(a_{n+1}\) is not an integer. If \(a_5\) is a cusp of the sequence a1,a2,…,an,… in which \(a_1=k\) and \(a_n=-2\frac{(a_n-1)}{3}\) for all n>1, then k could be equal to:

A. 3
B. 16
C. 108
D. 162
E. 243

Kudos for a correct solution.


VERITAS PREP OFFICIAL SOLUTION:

As with many sequence problems, the wording of this question is designed to be horribly abstract. Let’s just focus on the fact that a5 is an integer but a6 is not an integer.

Putting the sequence into words can help. What do we do to find the next value? We take the previous value and multiply by −2/3. Or even more colloquially, we:

First, flip the sign of the previous one. Second, multiply it by two. Third, divide it by three.

So the second term will be −2/3 times the first one. The third term will be −2/3 times the second one. And so on.

Now, keep in mind that our goal is to find a value of k that will be an integer by the fifth term but not an integer by the sixth term. And this can make your job a lot easier. Positive vs. negative won’t have any bearing on whether a term is an integer or not, and the major operation that will control that will be division. Consider k = 6 as an example (since there are 2s and 3s all over this problem let’s pick a number that’s divisible by both). The first term would be 6, then the second term would be −2/3(6) or -4. Then the third term won’t be an integer, as the “divide by 3” part of the operation will leave you with a decimal.

So when you see that the 5th term of the sequence is going to be:

(−2/3)(−2/3)(−2/3)(−2/3)k, and will be an integer, but that the 6th term of the sequence will be:

(−2/3)(−2/3)(−2/3)(−2/3)(−2/3)k, and will not be an integer, you should see that the real question is “how many times can we evenly divide k by 3?”.

The answer, then, is 4, as it’s that fifth iteration of −2/3 that takes us from “integer” to “noninteger” status.

So kmust contain exactly four 3s, since 81=3^4 and since a5 contains no 3s (recall that a5 was an integer but not a multiple of 3).

Now, factor the answer choices. 3 is already prime factored, but it’s far short of four 3s, so it’s incorrect. 16=2^4; this has no 3s at all, so it’s also incorrect. 108=2^2*3^3; this answer is closer, but it’s still one 3 short, so it’s incorrect too. 162=(2)3^4; that’s the four 3s we need, so this is the correct answer. Finally, 243=3^5; that’s one 3 too many – we needed exactly four – so this is also incorrect.

Answer: D.


Missed the part when you say "since a5 contains no 3s (recall that a5 was an integer but not a multiple of 3)."

why do we say that a5 contains no 3's ?


My solution above is better than Veritas. Veritas explains solutions as if you're a math genius and just missed the answer because you ran out of time. They don't break down the problem thoroughly for those who make mistakes in a number theory. I did above.

Kudos [?]: 1 [0], given: 4

Intern
Intern
avatar
B
Joined: 09 Mar 2017
Posts: 37

Kudos [?]: 2 [0], given: 23

Re: A term an is called a “cusp” of a sequence if an is an integer but an+ [#permalink]

Show Tags

New post 24 Aug 2017, 09:21
Samuelboyle96 wrote:
I think if you get this right you're on the cusp of greatness. The question isn't too difficult once you understand what they are asking.

So we know
A1=K
A2 therefore =-2k/3 Because A2=-2(k)/3
A3= 4k/9 because A3 = -2(a2)/3 = -2 ((2k/3)/3) which equals 4k/9
A4 = -8k/27
A5 = 16K/81
A6 = -32K/243

So now we need to look at the solutions. Breaking the numbers into prime factorization is the trick for this part.

1) 3 well we can see that A5 =(16*3)/81 is not an integer
2) 16 is wrong as A5 = (2^4) * (2^4) / (3^4). Well (2^8) /(3^3) is clearly not an integer
3) 108 is wrong as A5 = [(2^4)* (9X13)] / 9^2 . Again we only have one power of 9 on the top and 2 on the bottom. Clearly not an integer
4) 162 = (9^2)* (2^4) / 9^2 this will be an integer

and A6 = -[2^5 * (9^2) *2)] / (9^2 X 3). Notice we have an extra 3 on the bottom therefore this isn't an integer.

5) We can solve E for fun
A5= [(2^5) * (9^2)*3] / [(9^2)X 3] Clearly an integer
A6= 243=(9^2) X 3 . so [(2^5) X (9^2 )*3] / [(9^2) X 3] Clearly an integer


Correct answer D

But this answer is wrong for 5), since you're dividing a5 by 9^2 *3, when you should really just be dividing by 9^2.

Kudos [?]: 2 [0], given: 23

Intern
Intern
avatar
Joined: 17 Jul 2017
Posts: 17

Kudos [?]: 1 [0], given: 4

Re: A term an is called a “cusp” of a sequence if an is an integer but an+ [#permalink]

Show Tags

New post 24 Aug 2017, 10:40
brandon7 wrote:
Samuelboyle96 wrote:
I think if you get this right you're on the cusp of greatness. The question isn't too difficult once you understand what they are asking.

So we know
A1=K
A2 therefore =-2k/3 Because A2=-2(k)/3
A3= 4k/9 because A3 = -2(a2)/3 = -2 ((2k/3)/3) which equals 4k/9
A4 = -8k/27
A5 = 16K/81
A6 = -32K/243

So now we need to look at the solutions. Breaking the numbers into prime factorization is the trick for this part.

1) 3 well we can see that A5 =(16*3)/81 is not an integer
2) 16 is wrong as A5 = (2^4) * (2^4) / (3^4). Well (2^8) /(3^3) is clearly not an integer
3) 108 is wrong as A5 = [(2^4)* (9X13)] / 9^2 . Again we only have one power of 9 on the top and 2 on the bottom. Clearly not an integer
4) 162 = (9^2)* (2^4) / 9^2 this will be an integer

and A6 = -[2^5 * (9^2) *2)] / (9^2 X 3). Notice we have an extra 3 on the bottom therefore this isn't an integer.

5) We can solve E for fun
A5= [(2^5) * (9^2)*3] / [(9^2)X 3] Clearly an integer
A6= 243=(9^2) X 3 . so [(2^5) X (9^2 )*3] / [(9^2) X 3] Clearly an integer


Correct answer D

But this answer is wrong for 5), since you're dividing a5 by 9^2 *3, when you should really just be dividing by 9^2.


9^2 makes it easier for it to be an integer. That is a typo and I can fix it but the answer is still 100% correct. If 9^2 X 3 is an integer then it's much easier for plain old 9^2 to be an integer.

Kudos [?]: 1 [0], given: 4

Re: A term an is called a “cusp” of a sequence if an is an integer but an+   [#permalink] 24 Aug 2017, 10:40
    Similar topics Author Replies Last post
Similar
Topics:
5 EXPERTS_POSTS_IN_THIS_TOPIC For positive integers n, the integer part of the nth term of sequence Bunuel 5 27 Apr 2015, 01:52
5 The first term of a sequence of consecutive positive even integers is gracie 4 03 Jun 2017, 11:13
20 EXPERTS_POSTS_IN_THIS_TOPIC For every positive integer n, the nth term of a sequence is anon1 10 26 Jul 2017, 06:24
6 There is a sequence where each term is a positive integer and at least hazelnut 1 23 Feb 2017, 23:56
2 EXPERTS_POSTS_IN_THIS_TOPIC There is a sequence such that each term is positive integer and each d MathRevolution 4 16 Aug 2016, 07:37
Display posts from previous: Sort by

A term an is called a “cusp” of a sequence if an is an integer but an+

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.