Author 
Message 
TAGS:

Hide Tags

Director
Status: Finally Done. Admitted in Kellogg for 2015 intake
Joined: 25 Jun 2011
Posts: 518
Location: United Kingdom
Concentration: International Business, Strategy
GPA: 2.9
WE: Information Technology (Consulting)

An infinite sequence of positive integers is called a perfect sequence [#permalink]
Show Tags
16 Feb 2012, 16:11
6
This post received KUDOS
17
This post was BOOKMARKED
Question Stats:
39% (01:26) correct 61% (01:36) wrong based on 516 sessions
HideShow timer Statistics
An infinite sequence of positive integers is called a perfect sequence. If each term in the sequence is a perfect number, that is, if each term can be expressed as the sum of its divisors, excluding itself. For example, 6 is a perfect number, as its divisors, 1, 2, and 3, sum to 6. Is the infinite sequence S a perfect sequence? (1) Exactly one term in S is a prime number. (2) In sequence S, each term after the first in S has exactly 3 divisors.
Official Answer and Stats are available only to registered users. Register/ Login.
_________________
Best Regards, E.
MGMAT 1 > 530 MGMAT 2> 640 MGMAT 3 > 610 GMAT ==> 730



Math Expert
Joined: 02 Sep 2009
Posts: 44599

Re: An infinite sequence of positive integers is called a perfect sequence [#permalink]
Show Tags
16 Feb 2012, 21:39
5
This post received KUDOS
Expert's post
11
This post was BOOKMARKED
An infinite sequence of positive integers is called a perfect sequence. If each term in the sequence is a perfect number, that is, if each term can be expressed as the sum of its divisors, excluding itself. For example, 6 is a perfect number, as its divisors, 1, 2, and 3, sum to 6. Is the infinite sequence S a perfect sequence?(1) Exactly one term in S is a prime number > primes have exactly two divisors 1 and itself, hence no prime is a perfect number, which means that S is not a perfect sequence. Sufficient. (2) In sequence S, each term after the first in S has exactly 3 divisors > a number to have exactly 3 divisors must be square of a prime, for example 3^2=9 has 3 divisors: 1, 3, and 9 (1, p, and p^2). No, such number is a perfect number: 1+3 cannot equal to 9, (1+p cannot equal to p^2 for integer p), which means that S is not a perfect sequence. Sufficient. Answer: D. Question about a perfect number: whatisthepositiveintegern1thesumofallofthe126635.htmlHope it helps.
_________________
New to the Math Forum? Please read this: Ultimate GMAT Quantitative Megathread  All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics



VP
Status: Top MBA Admissions Consultant
Joined: 24 Jul 2011
Posts: 1353
GRE 1: 1540 Q800 V740

Re: An infinite sequence of positive integers is called a perfect sequence [#permalink]
Show Tags
16 Feb 2012, 21:40
2
This post received KUDOS
(D) it is. Using statement (1), if one term in the sequence is a prime number, that number can never have the sum of the divisors (except the number itself) add up to the number itself. Therefore that number is not a perfect number. Therefore the sequence containing this number is not a perfect sequence. Sufficient. Using statement (2), if each term after the first has exactly three divisors, none of the numbers with these three divisors can be a perfect number. This is because one of the divisors will be the number itself, which will get excluded. The other two divisors will be 1 and another factor. This means the number must be = the factor + 1, which is not possible. Therefore this sequence is not a perfect sequence. Sufficient. (D) is the answer.
_________________
GyanOne  Top MBA Rankings and MBA Admissions Blog
Top MBA Admissions Consulting  Top MiM Admissions Consulting
Premium MBA Essay ReviewBest MBA Interview PreparationExclusive GMAT coaching
Get a FREE Detailed MBA Profile Evaluation  Call us now +91 98998 31738



Senior Manager
Joined: 24 Mar 2010
Posts: 343

Re: An infinite sequence of positive integers is called a perfect sequence [#permalink]
Show Tags
06 Sep 2012, 14:23
An infinite sequence of positive integers is called a perfect sequence if each term in the sequence is a perfect number, that is, if each term can be expressed as the sum of its divisors, excluding itself. For example, 6 is a perfect number, as its divisors, 1, 2, and 3, sum to 6. Is the infinite sequence S a perfect sequence?
(1) Exactly one term in S is a prime number. (2) In sequence S, each term after the first in S has exactly 3 divisors.
The OA is D. I put down A as my answer. For statement 2 I get that a positive integer with 3 divisors will be the square of a prime number (4, 9, 25, 49, etc.). This statement though says that each term AFTER THE FIRST has 3 divisors. So the first term could be a perfect number or not. Maybe I'm missing something here. Any help on this will be helpful.



Kaplan GMAT Instructor
Joined: 25 Aug 2009
Posts: 640
Location: Cambridge, MA

Re: An infinite sequence of positive integers is called a perfect sequence [#permalink]
Show Tags
06 Sep 2012, 16:52
Arbitrageur wrote: An infinite sequence of positive integers is called a perfect sequence if each term in the sequence is a perfect number, that is, if each term can be expressed as the sum of its divisors, excluding itself. For example, 6 is a perfect number, as its divisors, 1, 2, and 3, sum to 6. Is the infinite sequence S a perfect sequence?
(1) Exactly one term in S is a prime number. (2) In sequence S, each term after the first in S has exactly 3 divisors.
The OA is D. I put down A as my answer. For statement 2 I get that a positive integer with 3 divisors will be the square of a prime number (4, 9, 25, 49, etc.). This statement though says that each term AFTER THE FIRST has 3 divisors. So the first term could be a perfect number or not. Maybe I'm missing something here. Any help on this will be helpful. Hi Arbitraguer, The question asks if S is a perfect sequence, meaning that every term must be perfect. (1) tells us the first term is not perfect; (2) tells us that no term after the first can be perfect. Therefore, each of (1) and (2) answers "NO" to the question of whether the entire sequence is perfect. Both are sufficient!
_________________
Eli Meyer Kaplan Teacher http://www.kaptest.com/GMAT
Prepare with Kaplan and save $150 on a course!
Kaplan Reviews



Veritas Prep GMAT Instructor
Joined: 16 Oct 2010
Posts: 8028
Location: Pune, India

Re: An infinite sequence of positive integers is called a perfect sequence [#permalink]
Show Tags
06 Sep 2012, 22:12
Arbitrageur wrote: An infinite sequence of positive integers is called a perfect sequence if each term in the sequence is a perfect number, that is, if each term can be expressed as the sum of its divisors, excluding itself. For example, 6 is a perfect number, as its divisors, 1, 2, and 3, sum to 6. Is the infinite sequence S a perfect sequence?
(1) Exactly one term in S is a prime number. (2) In sequence S, each term after the first in S has exactly 3 divisors.
The OA is D. I put down A as my answer. For statement 2 I get that a positive integer with 3 divisors will be the square of a prime number (4, 9, 25, 49, etc.). This statement though says that each term AFTER THE FIRST has 3 divisors. So the first term could be a perfect number or not. Maybe I'm missing something here. Any help on this will be helpful. In the sequence S, if there is even one term which is not a perfect number, the sequence is not a perfect sequence. You need every term of the sequence to be a perfect number for the sequence to be a perfect sequence. Statement 2 tells you that after the first term, every term is 'nonperfect'. We don't care whether the first term is perfect or not. Since we know that the sequence has nonperfect numbers, the sequence is not perfect. Hence, statement 2 is also sufficient. Test makers like to add little twists like these "after the first term" to mess with your mind! I am sure you would have had no problems if the second statement were "...each term has exactly 3 divisors"
_________________
Karishma Veritas Prep  GMAT Instructor My Blog
Get started with Veritas Prep GMAT On Demand for $199
Veritas Prep Reviews



Math Expert
Joined: 02 Sep 2009
Posts: 44599

Re: An infinite sequence of positive integers is called a perfect sequence [#permalink]
Show Tags
04 Jun 2013, 05:04



Manager
Joined: 14 Nov 2011
Posts: 133
Location: United States
Concentration: General Management, Entrepreneurship
GPA: 3.61
WE: Consulting (Manufacturing)

Re: An infinite sequence of positive integers is called a perfect sequence [#permalink]
Show Tags
04 Jun 2013, 23:04
enigma123 wrote: An infinite sequence of positive integers is called a perfect sequence. If each term in the sequence is a perfect number, that is, if each term can be expressed as the sum of its divisors, excluding itself. For example, 6 is a perfect number, as its divisors, 1, 2, and 3, sum to 6. Is the infinite sequence S a perfect sequence?
(1) Exactly one term in S is a prime number. (2) In sequence S, each term after the first in S has exactly 3 divisors. question can be written in a better way: An infinite sequence of positive integers is called a perfect sequence , if each term in the sequence is a perfect number, that is, if each term can be expressed as the sum of its divisors, excluding itself. For example, 6 is a perfect number, as its divisors, 1, 2, and 3, sum to 6. Is the infinite sequence S a perfect sequence?



Manager
Joined: 28 Feb 2012
Posts: 114
Concentration: Strategy, International Business
GPA: 3.9
WE: Marketing (Other)

Re: An infinite sequence of positive integers is called a perfect sequence [#permalink]
Show Tags
05 Jun 2013, 03:40
1
This post received KUDOS
An infinite sequence of positive integers is called a perfect sequence. If each term in the sequence is a perfect number, that is, if each term can be expressed as the sum of its divisors, excluding itself. For example, 6 is a perfect number, as its divisors, 1, 2, and 3, sum to 6. Is the infinite sequence S a perfect sequence? (1) Exactly one term in S is a prime number. (2) In sequence S, each term after the first in S has exactly 3 divisors 1 st.) This statement sufficient by itself, because any the feature of the prime number is that it has only two divisors, 1 and the number itself. But according to the definition of the perfect numbers the sum of the divisors (excl. the number itself) should be equal to the number itself  which is not possible with prime numbers. So the sequence is not perfect. Sufficient. 2 st.) lets take some numbers that have exactly 3 divisors: 4 (1, 2, 4)  the sum of the 1+2 is 3, which is not perfect number. next number is 9 (1, 3, 9) the sum of 1+3=4 again not perfect since it does not equal to 9. Next number is 25 (1, 5, 25) the same conclusion. Here is the pattern, only squares of the prime numbers could have exactly 3 divisors, that means in this sequence we have not perfect numbers  sufficient. So each statement sufficient on its own  D.
_________________
If you found my post useful and/or interesting  you are welcome to give kudos!



Manager
Joined: 05 Jun 2012
Posts: 93

Re: An infinite sequence of positive integers is called a perfect sequence [#permalink]
Show Tags
11 Oct 2014, 05:13
Indeed a very nice question !!! Thanks again Bunnel for presenting solution with such a simplicity!!!
_________________
If you are not over prepared then you are under prepared !!!



NonHuman User
Joined: 09 Sep 2013
Posts: 6649

Re: An infinite sequence of positive integers is called a perfect sequence [#permalink]
Show Tags
12 Dec 2017, 00:48
Hello from the GMAT Club BumpBot! Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up  doing my job. I think you may find it valuable (esp those replies with Kudos). Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
GMAT Books  GMAT Club Tests  Best Prices on GMAT Courses  GMAT Mobile App  Math Resources  Verbal Resources




Re: An infinite sequence of positive integers is called a perfect sequence
[#permalink]
12 Dec 2017, 00:48






