Last visit was: 20 Nov 2025, 04:52 It is currently 20 Nov 2025, 04:52
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
avatar
harikris
Joined: 12 Jul 2012
Last visit: 06 Apr 2013
Posts: 23
Own Kudos:
636
 [341]
Given Kudos: 1
Posts: 23
Kudos: 636
 [341]
32
Kudos
Add Kudos
308
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 19 Nov 2025
Posts: 16,267
Own Kudos:
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,267
Kudos: 77,002
 [140]
90
Kudos
Add Kudos
50
Bookmarks
Bookmark this Post
User avatar
monsama
Joined: 20 Sep 2012
Last visit: 25 May 2024
Posts: 43
Own Kudos:
181
 [33]
Given Kudos: 34
Concentration: Finance, Entrepreneurship
GMAT 1: 750 Q50 V40
GPA: 3.37
WE:Analyst (Consulting)
GMAT 1: 750 Q50 V40
Posts: 43
Kudos: 181
 [33]
24
Kudos
Add Kudos
8
Bookmarks
Bookmark this Post
General Discussion
User avatar
daviesj
Joined: 23 Aug 2012
Last visit: 09 May 2025
Posts: 115
Own Kudos:
1,434
 [2]
Given Kudos: 35
Status:Never ever give up on yourself.Period.
Location: India
Concentration: Finance, Human Resources
GMAT 1: 570 Q47 V21
GMAT 2: 690 Q50 V33
GPA: 3.5
WE:Information Technology (Finance: Investment Banking)
GMAT 2: 690 Q50 V33
Posts: 115
Kudos: 1,434
 [2]
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
I didn't get the explaination....
what i did was i formed the grid on xy plane with info provided. total grid points i got were 100 and we need to select 2 points to form an arrow...so 100C2 : 4950...which is nowhere near the answer....whr exactly i m making the mistake?

Posted from my mobile device
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 19 Nov 2025
Posts: 16,267
Own Kudos:
77,002
 [6]
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,267
Kudos: 77,002
 [6]
4
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
daviesj
I didn't get the explaination....
what i did was i formed the grid on xy plane with info provided. total grid points i got were 100 and we need to select 2 points to form an arrow...so 100C2 : 4950...which is nowhere near the answer....whr exactly i m making the mistake?

Posted from my mobile device

What you forgot to consider is that the length of the arrow must be 5 units.
User avatar
daviesj
Joined: 23 Aug 2012
Last visit: 09 May 2025
Posts: 115
Own Kudos:
Given Kudos: 35
Status:Never ever give up on yourself.Period.
Location: India
Concentration: Finance, Human Resources
GMAT 1: 570 Q47 V21
GMAT 2: 690 Q50 V33
GPA: 3.5
WE:Information Technology (Finance: Investment Banking)
GMAT 2: 690 Q50 V33
Posts: 115
Kudos: 1,434
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Thanks for the wonderful explanation Karishma. Kudos for that.
Now what my concern is, should we expect to get this type of problems in the real exam?...I mean in this problem we need to draw the figure and need to manually count the possibilities that is time consuming.

Thanks.
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 19 Nov 2025
Posts: 16,267
Own Kudos:
77,002
 [6]
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,267
Kudos: 77,002
 [6]
2
Kudos
Add Kudos
4
Bookmarks
Bookmark this Post
daviesj
Thanks for the wonderful explanation Karishma. Kudos for that.
Now what my concern is, should we expect to get this type of problems in the real exam?...I mean in this problem we need to draw the figure and need to manually count the possibilities that is time consuming.

Thanks.

This question is based on an OG question. The OG question uses this concept though it doesn't require you to manually count the different cases.

Given unlimited time, you should be able to do this question i.e. conceptually you should be clear with this. It is a time consuming laborious question so I wouldn't expect GMAT to give this. It is missing the excitement - you can do most GMAT in under a minute or perhaps even 30 secs. The fun is to be able to figure out the logical trick that makes it tick.
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 19 Nov 2025
Posts: 16,267
Own Kudos:
77,002
 [3]
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,267
Kudos: 77,002
 [3]
3
Kudos
Add Kudos
Bookmarks
Bookmark this Post
VeritasPrepKarishma

The vertical arrows are shown by the blue arrows. 5 of them will start from x = 0, 5 from x = 1 and so on till x = 9. So you have 50 of these blue arrows.

Responding to a pm:

This is what this statement means: Draw an arrow starting from (0, 0) to (0, 5). Head of the arrow is at (0, 5). Then draw another one starting from (0, 1) to (0, 6). Another from (0, 2) to (0, 7). Another from (0, 3 to 0, 8). Another from (0, 4) to (0, 9). You are able to draw these 5 arrows such that x co-ordinate is 0 in each case. You cannot go higher up because y co-ordinate cannot be more than 9.

Similarly, draw an arrow starting from (1, 0) to (1, 5). Another from (1, 1) to (1, 6) and so on... You will again be able to draw 5 such arrows.

Keep increasing x co-ordinate by 1 and you will get 5 arrows each time till you reach x = 9. So you will get 10 groups of 5 vertical arrows each i.e. 50 such arrows.
avatar
Astral
Joined: 05 Nov 2013
Last visit: 20 Feb 2017
Posts: 18
Own Kudos:
Posts: 18
Kudos: 2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
VeritasPrepKarishma
Now check out the diagonal arrows. One co-ordinate should be of length 3 and another of 4 (so that the arrow length is 5 and all points are integers). Look at the purple arrows. The x co-ordinate is 3 and the y co-ordinate is 4. You can make 7*6 = 42 such arrows. Similarly, you can make 42 arrows with x cor-ordinate as 4 and y co-ordinate as 3. So you have 84 arrows. But you get another set of 84 arrows by keeping the arrows the same but putting the arrow head on the opposite end so you get a total of 2*84 = 168 arrows.

Similarly, you can make arrows in the opposite direction shown by the green arrows. So you have another 168 arrows.

Total = 100 + 100 + 168 + 168 = 536


Hi, cant we make slanting arrows also in the opposite direction like vertical and horizontal arrows i.e. just reversing the coordinates of A and B.

thanks
Abhishek

Look at the highlighted part above. We have already taken care of it.[/quote]


Thanks a lot for the reply.

There can be 4 different types of lines with 4 different slopes that may have 5 units as length (for eg. co-ordinates - (4,0)&(0,3); (3,0)&(0,4); (0,0)&(3,4); (0,0)&(4,3). Thus total number of lines 42*4=168. And if arrows are reversed number will be 168*2 = 336.

Request you to please let me know if I am going wrong somewhere.

thanks.
Attachments

Untitled.jpg
Untitled.jpg [ 21.32 KiB | Viewed 61533 times ]

User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 19 Nov 2025
Posts: 16,267
Own Kudos:
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,267
Kudos: 77,002
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Quote:
VeritasPrepKarishma
Now check out the diagonal arrows. One co-ordinate should be of length 3 and another of 4 (so that the arrow length is 5 and all points are integers). Look at the purple arrows. The x co-ordinate is 3 and the y co-ordinate is 4. You can make 7*6 = 42 such arrows. Similarly, you can make 42 arrows with x cor-ordinate as 4 and y co-ordinate as 3 (these are your blue and yellow arrows). So you have 84 arrows. But you get another set of 84 arrows by keeping the arrows the same but putting the arrow head on the opposite end so you get a total of 2*84 = 168 arrows.

Similarly, you can make arrows in the opposite direction shown by the green arrows. (these are your red and black arrows) So you have another 168 arrows.

Total = 100 + 100 + 168 + 168 = 536


There can be 4 different types of lines with 4 different slopes that may have 5 units as length (for eg. co-ordinates - (4,0)&(0,3); (3,0)&(0,4); (0,0)&(3,4); (0,0)&(4,3). Thus total number of lines 42*4=168. And if arrows are reversed number will be 168*2 = 336.

Request you to please let me know if I am going wrong somewhere.

thanks.

Note that we have already taken all 4 of them them into account in the highlighted part above.
avatar
karthic2510
Joined: 25 May 2016
Last visit: 20 Sep 2016
Posts: 12
Own Kudos:
12
 [12]
Given Kudos: 2
Posts: 12
Kudos: 12
 [12]
9
Kudos
Add Kudos
3
Bookmarks
Bookmark this Post
There is a much simpler way to do this, without having to visualise it.

The formula for distance between two points is d=Sqrt[(x2-x1)^2+(y2-y1)^2].

Now we know the distance is 5. so we get:

5=Sqrt[(x2-x1)^2+(y2-y1)^2].

25=[(x2-x1)^2+(y2-y1)^2]

Lets keep this aside, and look at our inequalities: 0 ≤ x ≤ 9 and 0 ≤ y ≤ 9.

This means the difference x2-x1 and y2-y1 can lie between 0 and 9.

Since our sum of the squares of the difference needs to be 25. The difference can be either 5 and 0, 0 and 5, 4 and 3 or 3 and 4.

The number of different coordinates for x1 and x2 which will give us a difference of:

5 is 10
0 is 10
4 is 12
3 is 14

Same for y coordinates.

So number of lines possible where the difference between x coordinates is 5 and y coordinates is 0 is 100. Interchange the differences and you get 100 more lines.

Number of lines possible where the difference between x coordinates is 4 and y coordinates is 3 is 168. Interchange the differences and you get 168 more lines.

Therefore total number of lines possible is - 100+100+168+168 = 536.
User avatar
NaeemHasan
Joined: 06 Oct 2015
Last visit: 04 Feb 2019
Posts: 64
Own Kudos:
Given Kudos: 73
Location: Bangladesh
Concentration: Accounting, Leadership
Posts: 64
Kudos: 129
Kudos
Add Kudos
Bookmarks
Bookmark this Post
VeritasPrepKarishma
harikris
Arrow AB which is a line segment exactly 5 units along with an arrowhead at A is to be constructed in the xy-plane. The x and y coordinates of A and B are to be integers that satisfy the inequalities 0 ≤ x ≤ 9 and 0 ≤ y ≤ 9. How many different arrows with these properties can be constructed ?

A. 50
B. 168
C. 200
D. 368
E. 536

Consider the diagram.
The arrows could be vertical, horizontal or diagonal.

Attachment:
Ques4.jpg
The vertical arrows are shown by the blue arrows. 5 of them will start from x = 0, 5 from x = 1 and so on till x = 9. So you have 50 of these blue arrows. You have another 50 vertical arrows which are the same arrows but with the arrow head on the opposite end (shown by the red arrow). So you have a total of 100 vertical arrows.
Similarly, you have 100 horizontal arrows.

Now check out the diagonal arrows. One co-ordinate should be of length 3 and another of 4 (so that the arrow length is 5 and all points are integers). Look at the purple arrows. The x co-ordinate is 3 and the y co-ordinate is 4. You can make 7*6 = 42 such arrows. Similarly, you can make 42 arrows with x cor-ordinate as 4 and y co-ordinate as 3. So you have 84 arrows. But you get another set of 84 arrows by keeping the arrows the same but putting the arrow head on the opposite end so you get a total of 2*84 = 168 arrows.

Similarly, you can make arrows in the opposite direction shown by the green arrows. So you have another 168 arrows.

Total = 100 + 100 + 168 + 168 = 536
Hi Karishma,
Can't the arrows start from point (1,2), (1,3), (2,3) etc.
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 19 Nov 2025
Posts: 16,267
Own Kudos:
77,002
 [1]
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,267
Kudos: 77,002
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
NaeemHasan
VeritasPrepKarishma
harikris
Arrow AB which is a line segment exactly 5 units along with an arrowhead at A is to be constructed in the xy-plane. The x and y coordinates of A and B are to be integers that satisfy the inequalities 0 ≤ x ≤ 9 and 0 ≤ y ≤ 9. How many different arrows with these properties can be constructed ?

A. 50
B. 168
C. 200
D. 368
E. 536

Consider the diagram.
The arrows could be vertical, horizontal or diagonal.

Attachment:
Ques4.jpg
The vertical arrows are shown by the blue arrows. 5 of them will start from x = 0, 5 from x = 1 and so on till x = 9. So you have 50 of these blue arrows. You have another 50 vertical arrows which are the same arrows but with the arrow head on the opposite end (shown by the red arrow). So you have a total of 100 vertical arrows.
Similarly, you have 100 horizontal arrows.

Now check out the diagonal arrows. One co-ordinate should be of length 3 and another of 4 (so that the arrow length is 5 and all points are integers). Look at the purple arrows. The x co-ordinate is 3 and the y co-ordinate is 4. You can make 7*6 = 42 such arrows. Similarly, you can make 42 arrows with x cor-ordinate as 4 and y co-ordinate as 3. So you have 84 arrows. But you get another set of 84 arrows by keeping the arrows the same but putting the arrow head on the opposite end so you get a total of 2*84 = 168 arrows.

Similarly, you can make arrows in the opposite direction shown by the green arrows. So you have another 168 arrows.

Total = 100 + 100 + 168 + 168 = 536
Hi Karishma,
Can't the arrows start from point (1,2), (1,3), (2,3) etc.

Yes, they can. In the solution above:

"...5 of them will start from x = 0, 5 from x = 1 and so on till x = 9. So you have 50 of these blue arrows. "

5 will start from x = 0. For these, y will be 0, 1, 2, 3 and 4.
So the arrows will start from (0, 0), (0, 1), (0, 2) etc

5 will start from x = 1. For these too, y will be 0, 1, 2, 3 and 4.
So the arrows will start from (1, 0), (1, 1), (1, 2) etc

Similarly, arrows will start from (2, 0), ... (2, 4), ... (3, 0) ... etc

Does this help?
User avatar
sayan640
Joined: 29 Oct 2015
Last visit: 10 Nov 2025
Posts: 1,179
Own Kudos:
Given Kudos: 783
GMAT 1: 570 Q42 V28
Products:
GMAT 1: 570 Q42 V28
Posts: 1,179
Kudos: 813
Kudos
Add Kudos
Bookmarks
Bookmark this Post
"The x co-ordinate is 3 and the y co-ordinate is 4. You can make 7*6 = 42 such arrows. "



Hi Karishma,
Many thanks in advance...
Will you please tell me how you got this ?
" You can make 7*6 = 42 such arrows.[/color]"

How you got 7*6 ?
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 19 Nov 2025
Posts: 16,267
Own Kudos:
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,267
Kudos: 77,002
Kudos
Add Kudos
Bookmarks
Bookmark this Post
sayan640
"The x co-ordinate is 3 and the y co-ordinate is 4. You can make 7*6 = 42 such arrows. "



Hi Karishma,
Many thanks in advance...
Will you please tell me how you got this ?
" You can make 7*6 = 42 such arrows.[/color]"

How you got 7*6 ?

x is between 0 and 9 (inclusive) and y is between 0 and 9 (inclusive).

So if we need the length of x to be 3, we can start it anywhere from x = 0 to x = 6 (7 cases).
If we start the arrow at x = 7, with a length of 3, it will mean that the end point of the arrow will have x co-ordinate of 10 (which is not allowed).
So for the x co-ordinate, you have 7 options.

Similarly, the length of y should be 4 so we can start it anywhere from y = 0 to y = 5 (6 cases)
If we start the arrow at y = 6, with a length of 4, it will mean that the end point of the arrow will have y co-ordinate of 10 (which is not allowed).
So for the y co-ordinate, you have 6 options.

Hence you get a total of 7 * 6 = 42 acceptable cases.
User avatar
ShukhratJon
Joined: 25 Jul 2018
Last visit: 10 Dec 2022
Posts: 52
Own Kudos:
Given Kudos: 257
Location: Uzbekistan
Concentration: Finance, Organizational Behavior
GRE 1: Q168 V167
GPA: 3.85
WE:Project Management (Finance: Investment Banking)
GRE 1: Q168 V167
Posts: 52
Kudos: 411
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Solving without graph.
Attachments

File comment: Solving without graph.
photo_2019-04-23_18-21-36.jpg
photo_2019-04-23_18-21-36.jpg [ 115.74 KiB | Viewed 7622 times ]

User avatar
hughng92
Joined: 30 Sep 2017
Last visit: 05 Jan 2025
Posts: 66
Own Kudos:
Given Kudos: 12
Posts: 66
Kudos: 89
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hello!

We can solve this question by using Combinatorics as well.

My approach for this question is below:

Given two points with their co-ordinates: A(x1, y1), B(x2, y2). Then the length of AB should be:

AB^2 = 5^2 =25 = (x1-x2)^2 + (y1-y2)^2 = X^2 + Y^2 in which I denote X = x1-x2 and Y = y1-y2

Our goal is to determine X and Y such that X^2 + Y^2 = 25. Let's find out all the pairs (X^2, Y^2) that meet such a requirement, and also keep in mind that the square root of Y^2 and X^2 has to be integers. One example below does not meet this requirement such as the pair (1,24) as square root of 24 is not an integer:

(X^2,Y^2) = { (0,25), (1,24), ..., (9,16),...} Feel Free to exploit the whole set but we have found only one candidate in this list that meets the requirements above: (9,16) = (3^2, 4^2)

Next, we need to find out all the pairs (x1, x2) that has a difference of 3 and all the pairs (y1,y2) that has a difference of 4.

1. All the pairs (x1, x2) that has a difference of 3: (0,3), (1,4), ..., (6,9) and you flip the coordinates = 14 pairs
AND all the pairs (y1,y2) that has a difference of 4: (0,4), (1,5),...,(5,9) and you flip the coordinates = 12 pairs


2. Question: How many ways for you to choose a pair from 7 pairs AND a pair from 6 pairs? 14 x 12 = 168
Next: Don't forget, there are 2 ways to arrange 2 chose pairs once we choose one from (y1,y2) and one from (x1,x2) so we have a total of 168 x 2 = 336

3. Do the same thing for special case: AB^2 = 5^2 =25 = (x1-x2)^2 + (y1-y2)^2 = X^2 + Y^2 = 0 + 25
Find All the pairs (x1, x2) that has a difference of 0: (0,0), (1,1), ..., (9,9) and you do not flip the coordinates in this case as you will get identical pairs = 10 pairs
AND all the pairs (y1,y2) that has a difference of 5: (0,5), (1,6),...,(4,9) and you flip the coordinates = 10 pairs

4. Question: How many ways for you to choose a pair from 10 pairs AND a pair from 10 pairs? 10 x 10 = 100
Next: Don't forget, there are 2 ways to arrange 2 chose pairs once we choose one from (y1,y2) and one from (x1,x2) so we have a total of 100 x 2 = 200

The FINAL Answer is: 336 + 200 = 536
avatar
Engineer1
Joined: 01 Jan 2014
Last visit: 15 Jun 2025
Posts: 201
Own Kudos:
Given Kudos: 457
Location: United States (IN)
Concentration: Strategy, Finance
Posts: 201
Kudos: 656
Kudos
Add Kudos
Bookmarks
Bookmark this Post
KarishmaB
harikris
Arrow AB which is a line segment exactly 5 units along with an arrowhead at A is to be constructed in the xy-plane. The x and y coordinates of A and B are to be integers that satisfy the inequalities 0 ≤ x ≤ 9 and 0 ≤ y ≤ 9. How many different arrows with these properties can be constructed ?

A. 50
B. 168
C. 200
D. 368
E. 536

Consider the diagram.
The arrows could be vertical, horizontal or diagonal.

Attachment:
Ques4.jpg
The vertical arrows are shown by the blue arrows. 5 of them will start from x = 0, 5 from x = 1 and so on till x = 9. So you have 50 of these blue arrows. You have another 50 vertical arrows which are the same arrows but with the arrow head on the opposite end (shown by the red arrow). So you have a total of 100 vertical arrows.
Similarly, you have 100 horizontal arrows.

Now check out the diagonal arrows. One co-ordinate should be of length 3 and another of 4 (so that the arrow length is 5 and all points are integers). Look at the purple arrows. The x co-ordinate is 3 and the y co-ordinate is 4. You can make 7*6 = 42 such arrows. Similarly, you can make 42 arrows with x cor-ordinate as 4 and y co-ordinate as 3. So you have 84 arrows. But you get another set of 84 arrows by keeping the arrows the same but putting the arrow head on the opposite end so you get a total of 2*84 = 168 arrows.

Similarly, you can make arrows in the opposite direction shown by the green arrows. So you have another 168 arrows.

Total = 100 + 100 + 168 + 168 = 536

KarishmaB - Should we not consider arrows that are parallel to X axis?
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 19 Nov 2025
Posts: 16,267
Own Kudos:
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,267
Kudos: 77,002
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Engineer1
KarishmaB
harikris
Arrow AB which is a line segment exactly 5 units along with an arrowhead at A is to be constructed in the xy-plane. The x and y coordinates of A and B are to be integers that satisfy the inequalities 0 ≤ x ≤ 9 and 0 ≤ y ≤ 9. How many different arrows with these properties can be constructed ?

A. 50
B. 168
C. 200
D. 368
E. 536

Consider the diagram.
The arrows could be vertical, horizontal or diagonal.

Attachment:
Ques4.jpg
The vertical arrows are shown by the blue arrows. 5 of them will start from x = 0, 5 from x = 1 and so on till x = 9. So you have 50 of these blue arrows. You have another 50 vertical arrows which are the same arrows but with the arrow head on the opposite end (shown by the red arrow). So you have a total of 100 vertical arrows.
Similarly, you have 100 horizontal arrows.

Now check out the diagonal arrows. One co-ordinate should be of length 3 and another of 4 (so that the arrow length is 5 and all points are integers). Look at the purple arrows. The x co-ordinate is 3 and the y co-ordinate is 4. You can make 7*6 = 42 such arrows. Similarly, you can make 42 arrows with x cor-ordinate as 4 and y co-ordinate as 3. So you have 84 arrows. But you get another set of 84 arrows by keeping the arrows the same but putting the arrow head on the opposite end so you get a total of 2*84 = 168 arrows.

Similarly, you can make arrows in the opposite direction shown by the green arrows. So you have another 168 arrows.

Total = 100 + 100 + 168 + 168 = 536

KarishmaB - Should we not consider arrows that are parallel to X axis?

We most certainly are to consider them.
We found that we get 100 vertical arrows. So then we will have 100 horizontal arrows too (see the highlighted above). This is so because 0 ≤ x ≤ 9 and 0 ≤ y ≤ 9.
User avatar
Adarsh_24
Joined: 06 Jan 2024
Last visit: 03 Apr 2025
Posts: 251
Own Kudos:
Given Kudos: 2,016
Posts: 251
Kudos: 57
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Quote:
Yes, they can. In the solution above:

"...5 of them will start from x = 0, 5 from x = 1 and so on till x = 9. So you have 50 of these blue arrows. "

5 will start from x = 0. For these, y will be 0, 1, 2, 3 and 4.
So the arrows will start from (0, 0), (0, 1), (0, 2) etc

5 will start from x = 1. For these too, y will be 0, 1, 2, 3 and 4.
So the arrows will start from (1, 0), (1, 1), (1, 2) etc

Similarly, arrows will start from (2, 0), ... (2, 4), ... (3, 0) ... etc

Does this help?

I have question if there was no arrow head.

I think the significance of arrow head is that (0,0)<-(5,0) is different from (0,0)->(5,0)

The equation (x1-x2)^2 + (y1-y2)^2 = 5^2
can be considered
1) 0+25=25
2) 25+0=25
3) 16+9=25
4) 9+16=25

1) x1,x2 can be 0-0,1-1,...,9-9. but, x1 and x2 cant be interchanged since they will be the same. 10.
while y1,y2 can be 0-5,1-5,..4-9. y1 and y2 can be interchanged since square is used in equation. 5*2=10
Total =10*10=100
2) similar as 1. Total 100
3)x1,x2 can be 0-4,1-5,...5-9. x1 and x2 can be interchanged since square. 6*2=12
y1,y2 can be 0-3,1-4,...,6-9. y1 and y2 can be interchanged. 7*2=14
Total=14*12=168
4)Similar as 3. Total 168.
Final=200+336=536

So if the arrow head was not significant then the reversing that I did in multiple steps may not have been possible?
it would be 50+50+42+42=184 ?
 1   2   
Moderators:
Math Expert
105414 posts
Tuck School Moderator
805 posts