GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 17 Jun 2019, 22:00

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

During a certain season, a team won 80 percent of its first

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

 
Manager
Manager
avatar
Joined: 02 Dec 2012
Posts: 174
During a certain season, a team won 80 percent of its first  [#permalink]

Show Tags

New post 20 Dec 2012, 08:20
1
23
00:00
A
B
C
D
E

Difficulty:

  5% (low)

Question Stats:

87% (02:00) correct 13% (02:41) wrong based on 856 sessions

HideShow timer Statistics

During a certain season, a team won 80 percent of its first 100 games and 50 percent of its remaining games. If the team won 70 percent of its games for the entire season, what was the total number of games that the team played?

(A) 180
(B) 170
(C) 156
(D) 150
(E) 105
Most Helpful Expert Reply
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 55631
Re: During a certain season, a team won 80 percent of its first  [#permalink]

Show Tags

New post 20 Dec 2012, 08:21
4
7
Walkabout wrote:
During a certain season, a team won 80 percent of its first 100 games and 50 percent of its remaining games. If the team won 70 percent of its games for the entire season, what was the total number of games that the team played?

(A) 180
(B) 170
(C) 156
(D) 150
(E) 105


This is simple weighted average question.

Let the # of the remaining games be \(x\) then \(0.8*100+0.5*x=0.7*(100+x)\) --> \(x=50\) --> total # of games thus equal to \(100+x=100+50=150\).

Answer: D.
_________________
General Discussion
SVP
SVP
User avatar
Status: The Best Or Nothing
Joined: 27 Dec 2012
Posts: 1795
Location: India
Concentration: General Management, Technology
WE: Information Technology (Computer Software)
Re: During a certain season, a team won 80 percent of its first  [#permalink]

Show Tags

New post 31 Jul 2014, 20:53
2
First...................... Remain ................. Total
100 ........................ x ............................ 100+x

Won
80 ............................. \(\frac{50x}{100}\) ...................... \(\frac{70}{100} * (100+x)\)

Equation would be

\(80 + \frac{50x}{100} = 70 + \frac{70x}{100}\)

x = 50

Total games = 100 + 50 = 150

Answer = D
_________________
Kindly press "+1 Kudos" to appreciate :)
Intern
Intern
avatar
Joined: 22 Oct 2014
Posts: 27
Re: During a certain season, a team won 80 percent of its first  [#permalink]

Show Tags

New post 02 Nov 2014, 13:14
1
2
Walkabout wrote:
During a certain season, a team won 80 percent of its first 100 games and 50 percent of its remaining games. If the team won 70 percent of its games for the entire season, what was the total number of games that the team played?

(A) 180
(B) 170
(C) 156
(D) 150
(E) 105


Total # of games = x
# of games won in first 100 = .8 * 100
# of games won in remaining games = .5 * (x-100)
# of games won in entire season = .7x

Now, .7x = .8 * 100 + .5 * (x-100)
.7x - .5x = 80 - 50
.2x = 30
x = 300/20 = 150
Ans: D
CEO
CEO
User avatar
V
Joined: 12 Sep 2015
Posts: 3782
Location: Canada
Re: During a certain season, a team won 80 percent of its first  [#permalink]

Show Tags

New post 15 Nov 2015, 21:50
2
1
Quote:
During a certain season, a team won 80 percent of its first 100 games and 50 percent of its remaining games. If the team won 70 percent of its games for the entire season, what was the total number of games that the team played?

(A) 180
(B) 170
(C) 156
(D) 150
(E) 105


If we let G = the TOTAL number of games played in the ENTIRE SEASON, then ...
G - 100 = the number of games REMAINING after the first 100 have been played

We can now start with a "word equation":
(# of wins in 1st 100 games) + (# of wins in remaining games) = (# of wins in ENTIRE season)
We get: (80% of 100) + (50% of G-100) = 70% of G
Rewrite as 80 + 0.5(G - 100) = 0.7G
Expand: 80 + 0.5G - 50 = 0.7G
Simplify: 30 = 0.2G
Solve: G = 150

Answer: D
_________________
Test confidently with gmatprepnow.com
Image
Senior Manager
Senior Manager
User avatar
Joined: 20 Aug 2015
Posts: 388
Location: India
GMAT 1: 760 Q50 V44
Re: During a certain season, a team won 80 percent of its first  [#permalink]

Show Tags

New post 16 Nov 2015, 00:43
Walkabout wrote:
During a certain season, a team won 80 percent of its first 100 games and 50 percent of its remaining games. If the team won 70 percent of its games for the entire season, what was the total number of games that the team played?

(A) 180
(B) 170
(C) 156
(D) 150
(E) 105


Given: A team won 80 percent of its first 100 games and 50 percent of its remaining games.
Team won 70 percent of its total games
Required: Total number of games played?

Assume that the remaining games = 100x
Total games won = 80 + 50x
This is 70% of the total games played.

0.7*(100x + 100) = 80 + 50x
70x + 70 = 80 +50x
x = 0.5

Hence 100x = 50

Total games played = 100 + 100x = 150 Option D

Note: We used 100x to avoid the usage of unitary method caused by assuming 100
Target Test Prep Representative
User avatar
G
Status: Head GMAT Instructor
Affiliations: Target Test Prep
Joined: 04 Mar 2011
Posts: 2823
Re: During a certain season, a team won 80 percent of its first  [#permalink]

Show Tags

New post 28 Jun 2016, 05:51
1
Walkabout wrote:
During a certain season, a team won 80 percent of its first 100 games and 50 percent of its remaining games. If the team won 70 percent of its games for the entire season, what was the total number of games that the team played?

(A) 180
(B) 170
(C) 156
(D) 150
(E) 105


We are first given that a team won 80 percent of its first 100 games. This means the team won 0.8 x 100 = 80 games out of its first 100 games.

We are next given that the team won 50 percent of its remaining games. If we use variable T to represent the total number of games in the season, then we can say T – 100 equals the number of remaining games in the season. Thus we can say:

0.5(T – 100) = number of wins for remaining games

0.5T – 50 = number of wins for remaining games

Lastly, we are given that team won 70 percent of all games played in the season. That is, they won 0.7T games in the entire season. With this we can set up the equation:

Number of first 100 games won + Number of games won for remaining games = Total Number of games won in the entire season

80 + 0.5T – 50 = 0.7T

30 = 0.2T

300 = 2T

150 = T

Answer is D.
_________________

Jeffrey Miller

Head of GMAT Instruction

Jeff@TargetTestPrep.com
TTP - Target Test Prep Logo
122 Reviews

5-star rated online GMAT quant
self study course

See why Target Test Prep is the top rated GMAT quant course on GMAT Club. Read Our Reviews

If you find one of my posts helpful, please take a moment to click on the "Kudos" button.

Intern
Intern
User avatar
B
Joined: 08 May 2016
Posts: 26
Location: United States
WE: Project Management (Aerospace and Defense)
Re: During a certain season, a team won 80 percent of its first  [#permalink]

Show Tags

New post 27 Nov 2016, 14:44
The extremes are 50 % and 80 %. 70% is the overall percent:

50 -------------70-------80
...........20.......10......

The difference between these numbers are in blue, above.

The ratio of the initial set (100 games) and the second set (x games) will be:
100/x = 20/10.
Thus x = 50. Total number of games played = 100 + x = 150
_________________
What's your totem?
Intern
Intern
User avatar
B
Joined: 19 Nov 2016
Posts: 15
Schools: Erasmus '18
During a certain season, a team won 80 percent of its first  [#permalink]

Show Tags

New post 05 Jan 2017, 18:10
First 100 games -> win 80% = 80
Remaining games -> X
Remaining games won-> (50/100)X
Total games 100first + X -> won 70/100 (100+X)
So..

80+(50/100)x= 70/100 (100+x)
80-70 =(70/100)x-(50/100)x
10 = (20/100)x
x=50 (remaining games) --> Total = 100 +50=150 D
Director
Director
avatar
G
Joined: 02 Sep 2016
Posts: 657
Re: During a certain season, a team won 80 percent of its first  [#permalink]

Show Tags

New post 01 Apr 2017, 09:41
Walkabout wrote:
During a certain season, a team won 80 percent of its first 100 games and 50 percent of its remaining games. If the team won 70 percent of its games for the entire season, what was the total number of games that the team played?

(A) 180
(B) 170
(C) 156
(D) 150
(E) 105


Total games= 100+x
Won= 0.80*100= 80
and also won= 0.50*x

80+0.5x=0.70(100+x)
160+x=(7/5)* (100+x)
800+5x=700+7x
x=50

Therefore total number of games played by the team are (100+50=150).
Manager
Manager
avatar
B
Joined: 02 Jan 2017
Posts: 71
Location: Pakistan
Concentration: Finance, Technology
GMAT 1: 650 Q47 V34
GPA: 3.41
WE: Business Development (Accounting)
Reviews Badge
Re: During a certain season, a team won 80 percent of its first  [#permalink]

Show Tags

New post 16 Dec 2017, 03:58
Let the games above 100 be : Y

What we know. 80% won from 100 & 50 % won from Y games.
Final winning average is 70 %

Equation becomes

.8 * 100 + .5 * Y= .7 * ( 100 + Y)

Solve for y , answer is D = 150

What does the equation mean
LHS: 80 % of 100 games Plus 50 % of remaning Y games will tell us how many total games the team won.
RHS: Tells us if we multiply final winning % with Total games, we will find out how many games the team won.

Since LHS & RHS are telling us the same thing, they become equatable.

Regards
EMPOWERgmat Instructor
User avatar
V
Status: GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Joined: 19 Dec 2014
Posts: 14347
Location: United States (CA)
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Re: During a certain season, a team won 80 percent of its first  [#permalink]

Show Tags

New post 19 Feb 2018, 13:22
Hi All,

The algebra involved in this question can be written out in a couple of different ways. We're told that a team won 80% of its first 100 games and 50% of the remaining games

Initial wins = .8(100) = 80
Later wins = .5(X) = .5X

Total wins = 80 + .5X
Total games played: (100+X)

We're also told that the team won 70% of the games that it played for the ENTIRE SEASON. We now how 2 different pieces of information that mean the same thing, so we can set them equal to one another....

Total wins = .7(100+X)

Total wins = 80 + .5X = .7(100+X)

80 + .5X = .7(100+X)
80 + .5X = 70 + .7X
10 = .2X
50 = X

Total games played = 100 + 50 = 150

Final Answer:

GMAT assassins aren't born, they're made,
Rich
_________________
760+: Learn What GMAT Assassins Do to Score at the Highest Levels
Contact Rich at: Rich.C@empowergmat.com

*****Select EMPOWERgmat Courses now include ALL 6 Official GMAC CATs!*****

Rich Cohen

Co-Founder & GMAT Assassin

Special Offer: Save $75 + GMAT Club Tests Free
  Official GMAT Exam Packs + 70 Pt. Improvement Guarantee
www.empowergmat.com/
Tuck School Moderator
User avatar
P
Joined: 31 Aug 2016
Posts: 288
GMAT 1: 700 Q49 V37
Premium Member Reviews Badge
Re: During a certain season, a team won 80 percent of its first  [#permalink]

Show Tags

New post 01 Mar 2019, 18:15
Walkabout wrote:
During a certain season, a team won 80 percent of its first 100 games and 50 percent of its remaining games. If the team won 70 percent of its games for the entire season, what was the total number of games that the team played?

(A) 180
(B) 170
(C) 156
(D) 150
(E) 105

We can treat this problem as a mixture problem and use weighted averages to solve it(VeritasKarishma ). Weighted Average and Mixture Problems on the GMAT

\(\frac{100}{x} = \frac{(70-50)}{(80-70)}\)
x = 50
total games = 150.
_________________
GMAT Club Bot
Re: During a certain season, a team won 80 percent of its first   [#permalink] 01 Mar 2019, 18:15
Display posts from previous: Sort by

During a certain season, a team won 80 percent of its first

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne