GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 16 Dec 2018, 00:18

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel
Events & Promotions in December
PrevNext
SuMoTuWeThFrSa
2526272829301
2345678
9101112131415
16171819202122
23242526272829
303112345
Open Detailed Calendar
  • FREE Quant Workshop by e-GMAT!

     December 16, 2018

     December 16, 2018

     07:00 AM PST

     09:00 AM PST

    Get personalized insights on how to achieve your Target Quant Score.
  • Free GMAT Prep Hour

     December 16, 2018

     December 16, 2018

     03:00 PM EST

     04:00 PM EST

    Strategies and techniques for approaching featured GMAT topics

For positive integers 10 < K < Z < Q, what is the value of the remaind

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

SC Moderator
User avatar
V
Joined: 23 Sep 2015
Posts: 1558
GMAT ToolKit User Premium Member Reviews Badge CAT Tests
For positive integers 10 < K < Z < Q, what is the value of the remaind  [#permalink]

Show Tags

New post 02 Dec 2018, 00:55
4
00:00
A
B
C
D
E

Difficulty:

  45% (medium)

Question Stats:

69% (01:07) correct 31% (01:11) wrong based on 52 sessions

HideShow timer Statistics

For positive integers 10 < K < Z < Q, what is the value of the remainder when Q is divided by Z?

Statement #1: Q = \(K^2\)

Statement #2: Z = K + 1

_________________

Thanks!
Do give some kudos.

Simple strategy:
“Once you’ve eliminated the impossible, whatever remains, however improbable, must be the truth.”

Want to improve your Score:
GMAT Ninja YouTube! Series 1| GMAT Ninja YouTube! Series 2 | How to Improve GMAT Quant from Q49 to a Perfect Q51

My Notes:
Reading comprehension | Critical Reasoning | Absolute Phrases | Subjunctive Mood

Director
Director
User avatar
P
Joined: 18 Jul 2018
Posts: 502
Location: India
Concentration: Finance, Marketing
WE: Engineering (Energy and Utilities)
Premium Member Reviews Badge CAT Tests
Re: For positive integers 10 < K < Z < Q, what is the value of the remaind  [#permalink]

Show Tags

New post 02 Dec 2018, 09:06
From statement 1:

Q = \(K^2\)
From the question stem, Min value of K is 11 as K is an integer.
But no info about Z. Insufficient.

From statement 2:

Z = K+1
Min value of K is 11. Then Z is 12.
but Q can be any integer, hence insufficient.

Combining both,

\(K = Z-1\)
\(Q = K^2\)
\(Q = Z^2+1-2Z\).
When Q is divided by Z, The remainder is always as \(Z^2\) and -2Z is always divisible by Z.

C is the asnwer.
_________________

When you want something, the whole universe conspires in helping you achieve it.

Intern
Intern
avatar
B
Joined: 16 Oct 2018
Posts: 8
Re: For positive integers 10 < K < Z < Q, what is the value of the remaind  [#permalink]

Show Tags

New post 02 Dec 2018, 15:43
Afc0892 wrote:
When Q is divided by Z, The remainder is always as \(Z^2\) and -2Z is always divisible by Z.

C is the asnwer.


To quickly clarify, I think you have it right except for this line.

When we take Q=\(Z^2\)+1−2ZQ and divide it by Z we get Z-2 R 1. The remainder is due to the +1 term divided by Z as we know the other are multiples of Z and Z is not one.
Intern
Intern
avatar
B
Joined: 27 Oct 2018
Posts: 23
For positive integers 10 < K < Z < Q, what is the value of the remaind  [#permalink]

Show Tags

New post Updated on: 03 Dec 2018, 04:29
aragonn wrote:

Official Explanation:



For this one, we’ll at least start out with picking numbers and see how far we get with this strategy.

Statement #1: Q = \(K^2\)

For simplicity, say that K = 20, so Q = 400. If Z = 40, then it goes evenly into 400, so the remainder is zero. On the other hand, if Z = 250, then it goes once into 400 with a remainder of 150. Two different choices of numbers give two different values of the remainder. This choice, alone and by itself, is not sufficient.

Statement #2: Z = K + 1

For simplicity, let K = 10. This makes Z = 11, but that doesn’t matter. Under this statement, there’s no restriction on the value of Q. If Q = 60, then 10 divides evenly into 60, and the remainder is zero. If Q = 69, then 10 goes into it six times with a remainder of 9. Two different choices of numbers give two different values of the remainder. This choice, alone and by itself, is not sufficient.

Combined statements:

Let’s pick K = 11. Then Z = 12 and Q = 121. We know that 12 goes evenly into 120, so when we divide 121 by 12, we get a remainder of 1.

It gets hard to pick numbers and do the squaring & division without a calculator. All other choices will result in the same remainder of 1. Remember that we can use picking numbers to disqualify an answer, to show that it leads to two different conclusions, but if the same numerical answer results every time, we need to verify that with algebra or logic.

Remember the Difference of Two Squares pattern. We know that

Q − 1 = \(K^2\)− 1 = (K + 1)(K − 1)

Thus, Z = K + 1 always divides evenly into Q − 1. If we add one, the next integer up from Q − 1 is Q—the integer Q is exactly one more than the integer Q − 1. When we divide Q by Z = K + 1, Z always goes evenly into Q − 1, and the extra 1 is left over, so we always will have a remainder of 1.

The two statements together allow us to find a unique numerical answer to the prompt questions. Combined, the statements are sufficient.

Answer = (C)



Thanks So much.
I got it totally wrong.

It is C

Originally posted by Mahmoudfawzy83 on 03 Dec 2018, 03:56.
Last edited by Mahmoudfawzy83 on 03 Dec 2018, 04:29, edited 1 time in total.
SC Moderator
User avatar
V
Joined: 23 Sep 2015
Posts: 1558
GMAT ToolKit User Premium Member Reviews Badge CAT Tests
For positive integers 10 < K < Z < Q, what is the value of the remaind  [#permalink]

Show Tags

New post 03 Dec 2018, 04:22
2

Official Explanation:



For this one, we’ll at least start out with picking numbers and see how far we get with this strategy.

Statement #1: Q = \(K^2\)

For simplicity, say that K = 20, so Q = 400. If Z = 40, then it goes evenly into 400, so the remainder is zero. On the other hand, if Z = 250, then it goes once into 400 with a remainder of 150. Two different choices of numbers give two different values of the remainder. This choice, alone and by itself, is not sufficient.

Statement #2: Z = K + 1

For simplicity, let K = 10. This makes Z = 11, but that doesn’t matter. Under this statement, there’s no restriction on the value of Q. If Q = 60, then 10 divides evenly into 60, and the remainder is zero. If Q = 69, then 10 goes into it six times with a remainder of 9. Two different choices of numbers give two different values of the remainder. This choice, alone and by itself, is not sufficient.

Combined statements:

Let’s pick K = 11. Then Z = 12 and Q = 121. We know that 12 goes evenly into 120, so when we divide 121 by 12, we get a remainder of 1.

It gets hard to pick numbers and do the squaring & division without a calculator. All other choices will result in the same remainder of 1. Remember that we can use picking numbers to disqualify an answer, to show that it leads to two different conclusions, but if the same numerical answer results every time, we need to verify that with algebra or logic.

Remember the Difference of Two Squares pattern. We know that

Q − 1 = \(K^2\)− 1 = (K + 1)(K − 1)

Thus, Z = K + 1 always divides evenly into Q − 1. If we add one, the next integer up from Q − 1 is Q—the integer Q is exactly one more than the integer Q − 1. When we divide Q by Z = K + 1, Z always goes evenly into Q − 1, and the extra 1 is left over, so we always will have a remainder of 1.

The two statements together allow us to find a unique numerical answer to the prompt questions. Combined, the statements are sufficient.

Answer = (C)
_________________

Thanks!
Do give some kudos.

Simple strategy:
“Once you’ve eliminated the impossible, whatever remains, however improbable, must be the truth.”

Want to improve your Score:
GMAT Ninja YouTube! Series 1| GMAT Ninja YouTube! Series 2 | How to Improve GMAT Quant from Q49 to a Perfect Q51

My Notes:
Reading comprehension | Critical Reasoning | Absolute Phrases | Subjunctive Mood

Manhattan Prep Instructor
User avatar
G
Joined: 04 Dec 2015
Posts: 649
GMAT 1: 790 Q51 V49
GRE 1: Q170 V170
Re: For positive integers 10 < K < Z < Q, what is the value of the remaind  [#permalink]

Show Tags

New post 03 Dec 2018, 15:03
aragonn wrote:
For positive integers 10 < K < Z < Q, what is the value of the remainder when Q is divided by Z?

Statement #1: Q = \(K^2\)

Statement #2: Z = K + 1




Neither statement alone is going to help too much! Statement 1 doesn't tell us the value of Z. Statement 2 doesn't tell us the value of Q. You can't be 100% confident that each statement is insufficient just on that basis, but it's a good clue. Here's how I convinced myself:

Statement 1: Suppose that Z is only 1 smaller than Q. In that case, the remainder of Q/Z should be 1. But if Z is 2 smaller than Q, the remainder should be 2. It's definitely possible for Z to be either of those numbers, since Q = K^2, which is much bigger than K - so there's a lot of 'wiggle room' for Z to have different values in between K and K^2.

Statement 2: If Q is only 1 bigger than Z, the remainder is 1. If Q is 2 bigger than Z, the remainder is 2. Testing cases with numbers that are close together is useful for remainders! It's much easier to calculate the remainder of 99999999/99999998 than the remainder of 99999999/375. Not sufficient.

Putting the two statements together, I'd like to test cases, since the math is getting a bit intense. Let's start with the easiest number we're allowed to use: K = 11.
In that case, Z = 12 and Q = 11^2, which is 121. 121/12 has a remainder of 1.

If K = 12, Z = 13 and Q = 12^2 = 144. 144/13 has a remainder of 1 as well.

At this point, you could either choose C and move on, or you could try to come up with a mathematical justification to choose C. I thought about it like this: K goes into Q exactly K times, with a remainder of 0. Since Z is slightly bigger than K, but only by a tiny bit, we should be able to fit it into Q 1 fewer time. So, K+1 should go into Q K-1 times. That gives you (K+1)(K-1) = K^2-1, which has 1 left over when dividing into K^2.
_________________

Image

Chelsey Cooley | Manhattan Prep | Seattle and Online

My latest GMAT blog posts | Suggestions for blog articles are always welcome!

GMAT Club Bot
Re: For positive integers 10 < K < Z < Q, what is the value of the remaind &nbs [#permalink] 03 Dec 2018, 15:03
Display posts from previous: Sort by

For positive integers 10 < K < Z < Q, what is the value of the remaind

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


Copyright

GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.