Last visit was: 17 Jul 2024, 12:22 It is currently 17 Jul 2024, 12:22
Toolkit
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

# Given x and y are positive integers such that y is odd, is x divisible

SORT BY:
Tags:
Show Tags
Hide Tags
Math Expert
Joined: 02 Sep 2009
Posts: 94383
Own Kudos [?]: 641745 [16]
Given Kudos: 85693
Retired Moderator
Joined: 30 Jul 2013
Status:On a mountain of skulls, in the castle of pain, I sit on a throne of blood.
Posts: 258
Own Kudos [?]: 662 [5]
Given Kudos: 134
General Discussion
Intern
Joined: 10 Jan 2015
Posts: 4
Own Kudos [?]: 6 [1]
Given Kudos: 18
Manager
Joined: 25 Nov 2014
Posts: 93
Own Kudos [?]: 58 [3]
Given Kudos: 30
Concentration: Entrepreneurship, Technology
GMAT 1: 680 Q47 V38
GPA: 4
Given x and y are positive integers such that y is odd, is x divisible [#permalink]
3
Kudos
given Y is odd.
1) x^2 + y^2 = 8k+5
8k+5 , for different values of the constant k gives : 5, 13, 21, 29, 37, 45 ...
x^2 + y^2 = 5,13,21,29,37,45 .....
since y = odd, different values of y give :
y=1 : x^2 = 4, 12, 20, 28, 36, 44, ....
y=3 : x^2 = 4, 12, 20, 28, 36, ..... (leave out the negative values)
y=5 : x^2 = 4, 12, 20, ....
Thus x is not divisible by 4. Suff.

2) x-y = 3, and we know y is odd, say 2k+1.
Thus x = 2k+1+3 = 4 +2k.
Now this gives us x = 4,6,8,10.... So x may or may not be divisible by 4.
Not Suff.

Ans A.

Originally posted by SherLocked2018 on 10 Apr 2015, 23:59.
Last edited by SherLocked2018 on 11 Apr 2015, 00:02, edited 1 time in total.
Manager
Joined: 25 Mar 2014
Posts: 108
Own Kudos [?]: 126 [1]
Given Kudos: 48
Location: India
Concentration: Operations, Finance
GMAT Date: 05-10-2015
GPA: 3.51
WE:Programming (Computer Software)
Re: Given x and y are positive integers such that y is odd, is x divisible [#permalink]
1
Kudos
+1 to A.

Putting y = (2n + 1) in y^2, we get (4n^2 + 1 +4n) = 4n(n+1)+1. This expression when divided by 8 always gives reminder 1 for any value of n >=0.

Now, Statement 1 says that When (x^2 + y^2) is divided by 8, the remainder is 5 (4 + 1). Hence x^2 when divided by 8 should give remainder 4, as 1 is coming from y^2. So, x^2 = 8k + 4. x = 2 * [(2k + 1)^(1/2)].
So, its clear that x can never be divided by 4, as [(2k + 1)^(1/2)] can never be even. SUFFICIENT.

B is clearly INUFFICIENT.
Manager
Joined: 25 Mar 2014
Posts: 108
Own Kudos [?]: 126 [1]
Given Kudos: 48
Location: India
Concentration: Operations, Finance
GMAT Date: 05-10-2015
GPA: 3.51
WE:Programming (Computer Software)
Given x and y are positive integers such that y is odd, is x divisible [#permalink]
1
Kudos
SherLocked2018 wrote:
given Y is odd.
1) x^2 + y^2 = 8k+5
8k+5 , for different values of the constant k gives : 5, 13, 21, 29, 37, 45 ...
x^2 + y^2 = 5,13,21,29,37,45 .....
since y = odd, different values of y give :
y=1 : x^2 = 4, 12, 20, 28, 36, 44, ....
y=3 : x^2 = 4, 12, 20, 28, 36, ..... (leave out the negative values)
y=5 : x^2 = 4, 12, 20, ....
Thus x is not divisible by 4. Suff.

2) x-y = 3, and we know y is odd, say 2k+1.
Thus x = 2k+1+3 = 4 +2k.
Now this gives us x = 4,6,8,10.... So x may or may not be divisible by 4.
Not Suff.

Ans A.

Hi Sherloked,
I think you missed something here. Question is asking about x, not x^2.
x will "never" be divisible by 4.

Thank you.
Manager
Joined: 20 Jan 2013
Status:I am not a product of my circumstances. I am a product of my decisions
Posts: 95
Own Kudos [?]: 276 [1]
Given Kudos: 71
Location: India
Concentration: Operations, General Management
GPA: 3.92
WE:Operations (Energy and Utilities)
Re: Given x and y are positive integers such that y is odd, is x divisible [#permalink]
1
Kudos
Bunuel wrote:
Given x and y are positive integers such that y is odd, is x divisible by 4?

(1) When (x^2 + y^2) is divided by 8, the remainder is 5.
(2) x – y = 3

Kudos for a correct solution.

Given: X, Y >0 and Y is ODD
To find : Is X divisible by 4

Solution:

Statement 1: When (x^2 + y^2) is divided by 8, the remainder is 5.

(x^2 + y^2) could take any of the following values 5, 13, 21, 29......

When (x^2 + y^2) = 13 then Y=3 and X=2 and 13 divided by 8 leaves a remainder of 5
X is not Divisible by 4

When (x^2 + y^2) = 29 then Y=5 and X = 2 and 29 divided by 8 leaves a remainder of 5
X is not divisible by 4

Statement 1 is sufficient

Statement 2: x – y = 3

When Y=3 and X = 6 then X-Y = 3
X is not divisible by 4

When Y=1 and X = 4 then X-Y=3
X is divisible by 4

Statement 2 is not sufficient

GMAT Club Legend
Joined: 19 Dec 2014
Status:GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Posts: 21835
Own Kudos [?]: 11783 [1]
Given Kudos: 450
Location: United States (CA)
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Re: Given x and y are positive integers such that y is odd, is x divisible [#permalink]
1
Kudos
Hi AmoyV,

With Fact 1, you have an interesting theory, but you have NO proof that your theory impacts the question that was ASKED. If you do a little more work, you should be able to prove that Fact 1 is actually SUFFICIENT.

Be careful about assuming the "I don't know anything about <blank>" logic means that a Fact is insufficient. DS questions are designed to test you on specific concepts, so it's always better to have proof that you're correct, than to just assume that you are (and possibly miss out on some easy points when your thinking is incomplete).

GMAT assassins aren't born, they're made,
Rich
Manager
Joined: 15 May 2014
Posts: 59
Own Kudos [?]: 135 [1]
Given Kudos: 11
Given x and y are positive integers such that y is odd, is x divisible [#permalink]
1
Kudos
Given x and y are positive integers and y is odd

Statement 1:
x^2 + y^2 = 8q + 5
x^2 + (2k+1)^2 = 8q +5
x^2 + 4k^2+4k+1 = 8q + 5
x^2 + 4k^2+4k = 8q + 4
x^2 = 8q + 4 - 4k^2 - 4k
x^2 = 4 [(2q+1) - (k(k+ 1))]
x^2 = 4 [odd - even]
x^2 = 4 * odd square
x = 2 * odd integer; x is not a multiple of 4
Sufficient

Statement 2:
x - y = 3
x = y +3; x could be 4, 6, 8, 10... so x could or couldn't be a multiple of 4
Not Sufficient

Math Expert
Joined: 02 Sep 2009
Posts: 94383
Own Kudos [?]: 641745 [1]
Given Kudos: 85693
Re: Given x and y are positive integers such that y is odd, is x divisible [#permalink]
1
Kudos
Bunuel wrote:
Given x and y are positive integers such that y is odd, is x divisible by 4?

(1) When (x^2 + y^2) is divided by 8, the remainder is 5.
(2) x – y = 3

Kudos for a correct solution.

VERITAS PREP OFFICIAL SOLUTION:

As of now, we don’t know any specific properties of squares of odd and even integers. However, we do have a good (presumably!) understanding of divisibility. To recap quickly, divisibility is nothing but grouping. To take an example, if we divide 10 by 2, out of 10 marbles, we make groups of 2 marbles each. We can make 5 such groups and nothing will be left over. So quotient is 5 and remainder is 0. Similarly if you divide 11 by 2, you make 5 groups of 2 marbles each and 1 marble is left over. So 5 is the quotient and 1 is the remainder. For more on these concepts, check out our previous posts on divisibility.

Coming back to our question,
First thing that comes to mind is that if y is odd, y = (2k + 1).

We have no information on x so let’s proceed to the two statements.

Statement 1: When (x^2 + y^2) is divided by 8, the remainder is 5.

The statement tell us something about y^2 so let’s get that.
If y = (2k + 1)
y^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 4k(k + 1) + 1

Since one of k and (k+1) will definitely be even (out of any two consecutive integers, one is always even, the other is always odd), k(k+1) will be even. So 4k(k+1) will be divisible by 4*2 i.e. by 8. So when y^2 is divided by 8, it will leave a remainder 1.

When y^2 is divided by 8, remainder is 1. To get a remainder of 5 when x^2 + y^2 is divided by 8, we should get a remainder of 4 when x^2 is divided by 8. So x must be even. If x were odd, the remainder when x^2 were divided by 8 would have been 1. So we know that x is divisible by 2 but we don’t know whether it is divisible by 4 yet.

x^2 = 8a + 4 (when x^2 is divided by 8, it leaves remainder 4)
x^2 = 4(2a + 1)
So x = 2*?Odd Number

Square root of an odd number will be an odd number so we can see that x is even but not divisible by 4. This statement alone is sufficient to say that x is NOT divisible by 4.

Statement 2: x – y = 3

Since y is odd, we can say that x will be even (Since Even – Odd = Odd). But whether x is divisible by 2 only or by 4 as well, we cannot say. This statement alone is not sufficient.

So could you point out the takeaway from this question?

Note that when we were analyzing y, we used no information other than that it is odd. We found out that the square of any odd number when divided by 8 will always yield a remainder of 1.

Now what can you say about the square of an even number? Say you have an even number x.
x = 2a
x^2 = 4a^2

This tells us that x^2 will be divisible by 4 i.e. we can make groups of 4 with nothing leftover. What happens when we try to make groups of 8? We join two groups of 4 each to make groups of 8. If the number of groups of 4 is even, we will have no remainder leftover. If the number of groups of 4 is odd, we will have 1 group leftover i.e. 4 leftover. So when the square of an even number is divided by 8, the remainder is either 0 or 4.

Looking at it in another way, we can say that if a is odd, x^2 will be divisible by 4 and will leave a remainder of 4 when divided by 8. If a is even, x^2 will be divisible by 16 and will leave a remainder of 0 when divided by 8.

Takeaways
– The square of any odd number when divided by 8 will always yield a remainder of 1.
– The square of any even number will be either divisible by 4 but not by 8 or it will be divisible by 16 (obvious from the fact that squares have even powers of prime factors so 2 will have a power of 2 or 4 or 6 etc). In the first case, the remainder when it is divided by 8 will be 4; in the second case the remainder will be 0.
Manager
Joined: 25 Nov 2014
Posts: 93
Own Kudos [?]: 58 [0]
Given Kudos: 30
Concentration: Entrepreneurship, Technology
GMAT 1: 680 Q47 V38
GPA: 4
Re: Given x and y are positive integers such that y is odd, is x divisible [#permalink]
aniteshgmat1101 wrote:
SherLocked2018 wrote:
given Y is odd.
1) x^2 + y^2 = 8k+5
8k+5 , for different values of the constant k gives : 5, 13, 21, 29, 37, 45 ...
x^2 + y^2 = 5,13,21,29,37,45 .....
since y = odd, different values of y give :
y=1 : x^2 = 4, 12, 20, 28, 36, 44, ....
y=3 : x^2 = 4, 12, 20, 28, 36, ..... (leave out the negative values)
y=5 : x^2 = 4, 12, 20, ....
Thus x is not divisible by 4. Suff.

2) x-y = 3, and we know y is odd, say 2k+1.
Thus x = 2k+1+3 = 4 +2k.
Now this gives us x = 4,6,8,10.... So x may or may not be divisible by 4.
Not Suff.

Ans A.

Hi Sherloked,
I think you missed something here. Question is asking about x, not x^2.
x will "never" be divisible by 4.

Thank you.

Hi anitesh,
Yes, I solved for values of x^2, and then wrote the same, that x is not divisible by 4, since all the values of x^2, give values of x which can not be divisible for 4.

Hope I didnt confuse you
Manager
Joined: 25 Mar 2014
Posts: 108
Own Kudos [?]: 126 [0]
Given Kudos: 48
Location: India
Concentration: Operations, Finance
GMAT Date: 05-10-2015
GPA: 3.51
WE:Programming (Computer Software)
Re: Given x and y are positive integers such that y is odd, is x divisible [#permalink]
SherLocked2018 wrote:
aniteshgmat1101 wrote:
SherLocked2018 wrote:
given Y is odd.
1) x^2 + y^2 = 8k+5
8k+5 , for different values of the constant k gives : 5, 13, 21, 29, 37, 45 ...
x^2 + y^2 = 5,13,21,29,37,45 .....
since y = odd, different values of y give :
y=1 : x^2 = 4, 12, 20, 28, 36, 44, ....
y=3 : x^2 = 4, 12, 20, 28, 36, ..... (leave out the negative values)
y=5 : x^2 = 4, 12, 20, ....
Thus x is not divisible by 4. Suff.

2) x-y = 3, and we know y is odd, say 2k+1.
Thus x = 2k+1+3 = 4 +2k.
Now this gives us x = 4,6,8,10.... So x may or may not be divisible by 4.
Not Suff.

Ans A.

Hi Sherloked,
I think you missed something here. Question is asking about x, not x^2.
x will "never" be divisible by 4.

Thank you.

Hi anitesh,
Yes, I solved for values of x^2, and then wrote the same, that x is not divisible by 4, since all the values of x^2, give values of x which can not be divisible for 4.

Hope I didnt confuse you

Sorry my fault..You didnot confuse me at all
VP
Joined: 18 Dec 2017
Posts: 1161
Own Kudos [?]: 1047 [0]
Given Kudos: 421
Location: United States (KS)
GMAT 1: 600 Q46 V27
Re: Given x and y are positive integers such that y is odd, is x divisible [#permalink]
Bunuel wrote:
Given x and y are positive integers such that y is odd, is x divisible by 4?

(1) When (x^2 + y^2) is divided by 8, the remainder is 5.
(2) x – y = 3

Kudos for a correct solution.

Nice Question (So a bump up)

Given: y is positive odd. (1,3,5....)

Asked: x divisible by 4? (x=4/8/12/16.......)

Statement 1:
(1) When (x^2 + y^2) is divided by 8, the remainder is 5.

If y=1 then and (x^2+1) has to leave a remainder of 5 when divided by 8 then x ^2 can be 4 or 12.

Try with y=3 you will find value of x is divisible by 4.

Sufficient.

(2) x – y = 3

Remember y is odd.

y=1 then x=4 Works

y=3 then x=6 . Doesn't Work.

In sufficient.

Non-Human User
Joined: 09 Sep 2013
Posts: 33999
Own Kudos [?]: 851 [0]
Given Kudos: 0
Re: Given x and y are positive integers such that y is odd, is x divisible [#permalink]
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
Re: Given x and y are positive integers such that y is odd, is x divisible [#permalink]
Moderator:
Math Expert
94383 posts