GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 21 Feb 2019, 17:05

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel
Events & Promotions in February
PrevNext
SuMoTuWeThFrSa
272829303112
3456789
10111213141516
17181920212223
242526272812
Open Detailed Calendar
  • Online GMAT boot camp for FREE

     February 21, 2019

     February 21, 2019

     10:00 PM PST

     11:00 PM PST

    Kick off your 2019 GMAT prep with a free 7-day boot camp that includes free online lessons, webinars, and a full GMAT course access. Limited for the first 99 registrants! Feb. 21st until the 27th.
  • Free GMAT RC Webinar

     February 23, 2019

     February 23, 2019

     07:00 AM PST

     09:00 AM PST

    Learn reading strategies that can help even non-voracious reader to master GMAT RC. Saturday, February 23rd at 7 AM PT

How many even integers N exist such that x < N < x + 10?

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

 
Intern
Intern
avatar
B
Joined: 09 Jan 2017
Posts: 22
Location: Germany
Concentration: International Business, General Management
GPA: 3.7
How many even integers N exist such that x < N < x + 10?  [#permalink]

Show Tags

New post 27 Jan 2017, 03:35
13
00:00
A
B
C
D
E

Difficulty:

  85% (hard)

Question Stats:

43% (01:51) correct 57% (01:58) wrong based on 316 sessions

HideShow timer Statistics

How many even integers N exist such that x < N < x + 10?

(1) x is not odd

(2) x is not an integer


_________________

Kudos for correct answers or good questions!

VP
VP
User avatar
P
Joined: 05 Mar 2015
Posts: 1001
Re: How many even integers N exist such that x < N < x + 10?  [#permalink]

Show Tags

New post 27 Jan 2017, 04:28
1
lmuenzel wrote:
How many even integers N exist such that x < N < x + 10?

(1) x is not odd

(2) x is not an integer



(1) if x= 0.1 then total no. of even integers (0.1< N < 10.1) = 5
if x=2 then total number of even integers (2<N<12) = 4
Not suff

(2) if x= non integer
then N= 5 always
sufficient

Ans B
Manager
Manager
User avatar
S
Status: Just redeemed Kudos for GMAT Club Test !!
Joined: 14 Sep 2013
Posts: 94
Location: Bangladesh
GMAT 1: 530 Q40 V23
GPA: 3.56
WE: Analyst (Commercial Banking)
GMAT ToolKit User Premium Member
Re: How many even integers N exist such that x < N < x + 10?  [#permalink]

Show Tags

New post 27 Jan 2017, 08:01
lmuenzel wrote:
How many even integers N exist such that x < N < x + 10?

(1) x is not odd

(2) x is not an integer



This question test the concept of number line. 'Not odd' means any other integers, fraction etc except ODD number. Now just plug the given equation those 'not odd' values.

Ans: B
_________________

______________
KUDOS please, if you like the post or if it helps :-)
"Giving kudos" is a decent way to say "Thanks"

Master with structure - Numerical comparison [source: economist.com] https://gmatclub.com/forum/master-with-structure-numerical-comparison-233657.html#p1801987

Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 53063
Re: How many even integers N exist such that x < N < x + 10?  [#permalink]

Show Tags

New post 27 Jan 2017, 09:23
lmuenzel wrote:
How many even integers N exist such that x < N < x + 10?

(1) x is not odd

(2) x is not an integer



Check similar questions to practice:
how-many-integers-n-are-there-such-that-r-n-s-166396.html
how-many-integers-are-there-such-that-v-n-w-129065.html

Hope it helps.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Moderator
avatar
V
Joined: 21 Jun 2014
Posts: 1113
Location: India
Concentration: General Management, Technology
GMAT 1: 540 Q45 V20
GPA: 2.49
WE: Information Technology (Computer Software)
GMAT ToolKit User Premium Member
Re: How many even integers N exist such that x < N < x + 10?  [#permalink]

Show Tags

New post 27 Jan 2017, 22:06
x < N < X+10

Stmt-1:
if x is not odd then what else can it be? it can be even. but do you see the second stmt as well, oh yes! x can be fraction too

So you have two cases:
when x is even say x=0 then you have 0 < 2,4,6,8 < 10 - in total 4 even numbers
when x is fraction say x=0.5 then you have 0.5 < 2,4,6,8,10 < 10.5 - in total 5 even numbers

hence statement-1 is insufficient.

stmt-2:
when x is fraction say x=0.5 then you have 0.5 < 2,4,6,8,10 < 10.5 - in total 5 even numbers
when x is fraction say x=1.5 then you have 1.5 < 2,4,6,8,10 < 11.5 - in total 5 even numbers
when x is fraction say x=2.5 then you have 2.5 < 4,6,8,10,12 < 12.5 - in total 5 even numbers

Sufficient.
_________________

---------------------------------------------------------------
Target - 720-740
Project PS Butler - https://gmatclub.com/forum/project-ps-butler-practice-everyday-280904.html
http://gmatclub.com/forum/information-on-new-gmat-esr-report-beta-221111.html
http://gmatclub.com/forum/list-of-one-year-full-time-mba-programs-222103.html

Intern
Intern
avatar
B
Joined: 24 Jul 2017
Posts: 47
Location: India
WE: Information Technology (Computer Software)
Re: How many even integers N exist such that x < N < x + 10?  [#permalink]

Show Tags

New post 23 Dec 2017, 04:41
Easy deal by number picking. Questions asks the number of even integers between x and (x+10)

1. If x is an even integer
Ex: x = 0 ----> 0< 2,4,6,8 < 10 = 4

If x is not an integer but is even
Ex: x = 0.5 ----> 0.5 < 2,4,6,8,10 < 10.5 = 5

Clearly not sufficient.

2. If x is not an integer
Ex: x = 0.5 -----> 0.5 < 2,4,6,8,10 < 10.5 = 5

Sufficient.

Option B

Kudos if it helps :-)
Intern
Intern
avatar
B
Joined: 04 Mar 2018
Posts: 14
Re: How many even integers N exist such that x < N < x + 10?  [#permalink]

Show Tags

New post 06 Aug 2018, 22:45
1
why x can't be negative?
not odd doesn't mean x can't be negative.
GMATH Teacher
User avatar
G
Status: GMATH founder
Joined: 12 Oct 2010
Posts: 768
Re: How many even integers N exist such that x < N < x + 10?  [#permalink]

Show Tags

New post 22 Nov 2018, 17:15
lmuenzel wrote:
How many even integers N exist such that x < N < x + 10?

(1) x is not odd

(2) x is not an integer

\(x\,\,\, < \,\,\,N\,\,{\text{even}}\,\,\, < \,\,\,x + 10\)

\(? = \# N\)


\(\left( 1 \right)\,\,x \ne {\text{odd}}\,\,\,\left\{ \begin{gathered}
\,{\text{Take}}\,\,x{\text{ = 0}}\,\,\,\, \Rightarrow \,\,\,\,? = 4\,\,\,\,\,\,\,\left[ {2,4,6\,\,{\text{and}}\,\,8} \right] \hfill \\
\,{\text{Take}}\,\,x = 0.1\,\,\,\, \Rightarrow \,\,\,\,? = 5\,\,\,\,\,\,\,\left[ {2,4,6,8\,\,{\text{and}}\,\,10} \right] \hfill \\
\end{gathered} \right.\)


\(\left( 2 \right)\,\,x \ne \operatorname{int} \,\,\,\mathop \Rightarrow \limits^{\left( * \right)} \,\,\,x < \left\langle x \right\rangle \leqslant N \leqslant \left\langle {x + 9} \right\rangle < x + 10\)


\(\Rightarrow \,\,\,\,\left\{ \begin{gathered}
\,\left\langle x \right\rangle \,\,{\text{odd}}\,\,\,\, \Rightarrow \,\,\,\,\left\langle {x + 9} \right\rangle \,\,{\text{even}}\,\,\,\, \Rightarrow \,\,\,\,{\text{?}} = {\text{5}}\,\,\,\left[ {\left\langle {x + j} \right\rangle :j \in \left\{ {1,3,5,7,9} \right\}} \right] \hfill \\
\,\left\langle x \right\rangle \,\,{\text{even}}\,\,\,\, \Rightarrow \,\,\,\,\left\langle {x + 9} \right\rangle \,\,{\text{odd}}\,\,\,\, \Rightarrow \,\,\,\,{\text{?}} = {\text{5}}\,\,\,\left[ {\left\langle {x + j} \right\rangle :j \in \left\{ {0,2,4,6,8} \right\}} \right] \hfill \\
\end{gathered} \right.\,\,\,\, \Rightarrow \,\,\,\,\,? = 5\)

\(\left( * \right)\,\,\left\langle r \right\rangle \,\, = \,\,{\text{smallest}}\,\,{\text{integer}}\,\,{\text{greater}}\,\,{\text{than}}\,\,r\)


The correct answer is therefore (B).


This solution follows the notations and rationale taught in the GMATH method.

Regards,
Fabio.
_________________

Fabio Skilnik :: GMATH method creator (Math for the GMAT)
Our high-level "quant" preparation starts here: https://gmath.net

GMATH Teacher
User avatar
G
Status: GMATH founder
Joined: 12 Oct 2010
Posts: 768
Re: How many even integers N exist such that x < N < x + 10?  [#permalink]

Show Tags

New post 22 Nov 2018, 17:27
nightvision wrote:
why x can't be negative?
not odd doesn't mean x can't be negative.

Hi, nightvision !

When statement (1) is considered, a BIFURCATION is all you need to prove insufficiency.

(You COULD bifurcate (1) using negative numbers, of course.)

Statement (2) is a lot more interesting (and its corresponding rigorous treatment much harder).

My solution (posted above) deals with all possible scenarios.

If you cannot feel comfortable with it, let me give you a suggestion:

Substitute x by 0.1 (so that <x> will be 1) and do all the reasoning.
Afterwards, do exactly the same with 1.1 (in this case <x> will be 2).

If you prefer negative numbers, LoL, try x = -1.1 (in which case <x> equals -1).
Afterwards, do exactly the same with x = -0.1 (in this case <x> equals 0).

I believe after (at most) all 4 substitutions mentioned, you will REALLY understand all my arguments!

Regards and success in your studies,
Fabio.
_________________

Fabio Skilnik :: GMATH method creator (Math for the GMAT)
Our high-level "quant" preparation starts here: https://gmath.net

Manager
Manager
User avatar
P
Joined: 03 Mar 2018
Posts: 215
Premium Member CAT Tests
How many even integers N exist such that x < N < x + 10?  [#permalink]

Show Tags

New post 21 Dec 2018, 03:55
lmuenzel wrote:
How many even integers N exist such that x < N < x + 10?

(1) x is not odd

(2) x is not an integer


Veritas Prep OFFICIAL EXPLANATION

There are various ways to approach a problem like this one.

Students who are familiar with the principles of evenly spaced sets (so-called “Fence Post Problems”) can immediately infer that the number of even integers in this set will depend on whether the excluded endpoints x and x+10 are themselves even or not.

For these students, it is important to be careful when interpreting statement (1). When reading that x is not odd, recognize that two possibilities still remain – even, of course, but also non-integer. One case excludes the endpoints, but the other does not, so the number of elements in the set will change by 1 between these two cases (it will be either 4 or 5, respectively). Statement (2), however, guarantees that the endpoints are not excluded, so the number of even integers will simply be Range/Spacing = 10/2 = 5.

Other students may wish to pick a few possible values for x to reach the same conclusion. In that case, it’s important to consider different types of numbers. What types? Since the additional statements reference whether x is odd and whether it’s an integer, it would be wise to choose at least one even integer, one odd integer, and one non-integer.

For x is even, we will always find four even integers N satisfying x < N < x+10. E.g. x=10, 10 < N < 20, N could be 12, 14, 16, or 18.

For x is odd, we will always find five even integers N satisfying x < N < x+10. E.g. x=1. 1 < N < 11, N could be 2, 4, 6, 8, or 10.

For x is a non-integer, we will once again always find five even integers N satisfying x < N < x+10. E.g. x=-0.5. -0.5 < N < 9.5, N could be 0, 2, 4, 6, or 8.

Using either approach, statement (1) is not sufficient to answer the question, but statement (2) is. The answer is B.
_________________

Please mention my name in your valuable replies.

GMAT Club Bot
How many even integers N exist such that x < N < x + 10?   [#permalink] 21 Dec 2018, 03:55
Display posts from previous: Sort by

How many even integers N exist such that x < N < x + 10?

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


cron
Copyright

GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.