GMAT Question of the Day: Daily via email | Daily via Instagram New to GMAT Club? Watch this Video

It is currently 04 Apr 2020, 14:27

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

If a, b, and c are consecutive integers, where a < b < c, which of the

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Find Similar Topics 
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 62499
If a, b, and c are consecutive integers, where a < b < c, which of the  [#permalink]

Show Tags

New post 12 Nov 2019, 23:54
12
00:00
A
B
C
D
E

Difficulty:

  95% (hard)

Question Stats:

47% (02:36) correct 53% (02:06) wrong based on 92 sessions

HideShow timer Statistics

Most Helpful Expert Reply
Math Expert
avatar
V
Joined: 02 Aug 2009
Posts: 8308
If a, b, and c are consecutive integers, where a < b < c, which of the  [#permalink]

Show Tags

New post 14 Nov 2019, 08:09
3
3
Bunuel wrote:

Competition Mode Question



If a, b, and c are consecutive integers, where \(a < b < c\), which of the following cannot be the value of \(c^2 - (a^2 + b^2)\)?


(A) -77
(B) -32
(C) -21
(D) -10
(E) 0


Are You Up For the Challenge: 700 Level Questions


Convert \(c^2 - (a^2 + b^2)\) in terms of b......
\((b+1)^2 - ((b-1)^2 + b^2)=b^2+2b+1-(b^2-2b+1+b^2)=4b-b^2=b(4-b)=-(b)(b-4)\)

Look for the choices that can be converted in the form \(-(b)(b-4)\), that is product of numbers that differ by 4 *(-)

(A) -77 = \(-(11)(7)\)
(B) -32 = \(-(8)(4)\)
(C) -21 = \(-(7)(3)\)
(D) -10 = \(-(10)(1)=-(5)(2)\)...NO
(E) 0 = \(-(4)(0)\)

D
_________________
General Discussion
SVP
SVP
avatar
V
Joined: 20 Jul 2017
Posts: 1519
Location: India
Concentration: Entrepreneurship, Marketing
WE: Education (Education)
Re: If a, b, and c are consecutive integers, where a < b < c, which of the  [#permalink]

Show Tags

New post 13 Nov 2019, 00:24
2
2
If a, b, and c are consecutive integers, where a<b<c, which of the following cannot be the value of c2−(a2+b2)?

(A) -77
(B) -32
(C) -21
(D) -10
(E) 0

Let the values of a = n - 1, b = n & c = n + 1
--> c^2−(a^2+b^2) = (n + 1)^2 - [(n - 1)^2 + n^2]
--> n^2 + 2n + 1 - 2n^2 + 2n - 1
--> -n^2 + 4n
--> -(n^2 - 4n + 4 - 4)
--> -(n - 2)^2 + 4

(A) -77 = -(9)^2 + 4 --> Possible
(B) -32 = -(6)^2 + 4 --> Possible
(C) -21 = -(5)^2 + 4 --> Possible
(D) -10 --> Not Possible
(E) 0 = -(2)^2 + 4 --> Possible

IMO Option D
VP
VP
avatar
P
Joined: 24 Nov 2016
Posts: 1349
Location: United States
Re: If a, b, and c are consecutive integers, where a < b < c, which of the  [#permalink]

Show Tags

New post 13 Nov 2019, 03:53
1
Quote:
If a, b, and c are consecutive integers, where a<b<c, which of the following cannot be the value of \(c^2−(a^2+b^2)\)?

(A) -77
(B) -32
(C) -21
(D) -10
(E) 0


\(c^2−(a^2+b^2)\)
\(c^2=(a+2)^2=(a^2+4+4a)\)
\(a^2+b^2=a^2+(a+1)^2=a^2+a^2+1+2a=2a^2+2a+1\)
\(c^2−(a^2+b^2)=(a^2+4+4a)-(2a^2+2a+1)=-a^2+2a+3\)

\((A)-a^2+2a+3=-77…a^2-2a-80=0…(a-10)(a+8)=0:a=integer=valid\)
\((B)-a^2+2a+3=-32…a^2-2a-35=0…(a-7)(a+5)=0:a=integer=valid\)
\((C)-a^2+2a+3=-21…a^2-2a-24=0…(a-6)(a+4)=0:a=integer=valid\)
\((E)-a^2+2a+3=0…a^2-2a-3=0…(a-3)(a+1)=0:a=integer=valid\)
\((D)-a^2+2a+3=-10…a^2-2a-13=0…13=prime:a=not.integer=invalid\)

Ans (D)
Director
Director
User avatar
D
Joined: 07 Mar 2019
Posts: 911
Location: India
GMAT 1: 580 Q43 V27
WE: Sales (Energy and Utilities)
Re: If a, b, and c are consecutive integers, where a < b < c, which of the  [#permalink]

Show Tags

New post 13 Nov 2019, 05:45
1
If a, b, and c are consecutive integers, where a<b<c, which of the following cannot be the value of \(c^2−(a^2+b^2)\)?

(A) -77
(B) -32
(C) -21
(D) -10
(E) 0

\(c^2−(a^2+b^2)\) suggests that a,b and c can take any integer values where b = a + 1 and c = a + 2
Now, converting the equation in terms of lowest variable i.e. 'a'
\(c^2−(a^2+b^2)\) = \((a+2)^2 - (a^2 + (a + 1)^2)\)
= \(3 + 2a - a^2\)

For sake of ease checking values starting with a = 1 gives \(3 + 2a - a^2\) = 4
if a = 3, \(3 + 2a - a^2\) = 0
a = 6, \(3 + 2a - a^2\) = -21
a = 7, \(3 + 2a - a^2\) = -32
a = 10, \(3 + 2a - a^2\) = -77

Though by observing we can see that \(3 + 2a - a^2\) would give a negative value after giving a value of '0' for a = 3.
We can stop at a = 4 which gives -21 thus -10 cannot be the value of \(3 + 2a - a^2\).

IMO Answer D.
_________________
Ephemeral Epiphany..!

GMATPREP1 590(Q48,V23) March 6, 2019
GMATPREP2 610(Q44,V29) June 10, 2019
GMATPREPSoft1 680(Q48,V35) June 26, 2019
CR Forum Moderator
avatar
P
Joined: 18 May 2019
Posts: 788
GMAT ToolKit User Premium Member
Re: If a, b, and c are consecutive integers, where a < b < c, which of the  [#permalink]

Show Tags

New post 13 Nov 2019, 21:23
1
Given that a,b, and c are consecutive integers such that a<b<c. We are to determine which of the following cannot be the value of c^2 - (a^2 + b^2)

Since a,b, and c are consecutive numbers, and b is the number in the middle, then c=b+1 and a=b-1
so c^2 - (a^2 + b^2) = (b+1)^2 - [(b^2) + (b-1)^2]
b^2 + 2b +1 -[b^2 + b^2 -2b + 1]
4b - b^2 = b(4-b)
from this we know that when b=4, then b(4-b)=0, hence option E is out.
when b=5, 5(-1) = -5
when b=6, 6(-2)=-12
Since -10 lies between -5 and -12, there is no way of getting an integer value of b which yields -10 in the given expression above.
The answer, therefore, has to be -10.

A further check is to equate b(4-b) to -10 and find the determinant in order to confirm if it leads to a perfect square.
4b-b^2=-10
b^2-4b-10=0
The determinant of the above quadratic equation is [16-4(1)(-10)] = 56
Since 56 is not a perfect square to begin with, there is no way we can get integral roots of the above equation.

The answer is, therefore, option D.
Intern
Intern
avatar
Joined: 31 Oct 2018
Posts: 5
Re: If a, b, and c are consecutive integers, where a < b < c, which of the  [#permalink]

Show Tags

New post 13 Nov 2019, 21:59
1
D
C^2-(b^2+a^2)=(a+2)^2-(a+1)^2-a^2
=4-(a-1)^2
=4-(int)^2 is never -10

Posted from my mobile device
Intern
Intern
avatar
B
Joined: 26 Jun 2017
Posts: 4
GMAT ToolKit User
Re: If a, b, and c are consecutive integers, where a < b < c, which of the  [#permalink]

Show Tags

New post 13 Nov 2019, 22:02
1
Answer is -10 . Option D
Consider the integers : 10, 11, 12
12^2-(10^2+11^2) = 144-221 = -77
Consider integers : 7,8,9
9^2-(8^2+7^2) = 81-113 = -32
Consider integers : 6,7,8
8^2-(7^2 + 6^2 ) = 64-85 = -21
Consider integers : 3,4,5
5^2-(3^2+4^2) =0

Even if the numbers are negative , since we are squaring the values it will become positive.

Hence, answer is -10

Posted from my mobile device
Intern
Intern
avatar
Joined: 31 Oct 2018
Posts: 5
Re: If a, b, and c are consecutive integers, where a < b < c, which of the  [#permalink]

Show Tags

New post 13 Nov 2019, 22:09
1
Ans.is D
C^2-(b^2+a^2)=(a+2)^2-(a+1)^2-a^2
=4-(a-1)^2
=4-(int)^2 is never -10

Posted from my mobile device
Manager
Manager
avatar
G
Joined: 31 Oct 2015
Posts: 95
GMAT ToolKit User
Re: If a, b, and c are consecutive integers, where a < b < c, which of the  [#permalink]

Show Tags

New post 13 Nov 2019, 23:33
The answer is D.

Using pattern, we figure out that as the numbers increase , the difference in the squares also increase.

For numbers 3,4,5, The given expression is zero

When you try 4,5,6 , the given expression is 6

When you try 5,6,7, the given expression is -12

As you can see -10 is not possible

Therefore D

Image Posted from GMAT ToolKit
Intern
Intern
avatar
B
Joined: 14 Jul 2019
Posts: 32
Premium Member CAT Tests
Re: If a, b, and c are consecutive integers, where a < b < c, which of the  [#permalink]

Show Tags

New post 01 Mar 2020, 09:22
Bunuel wrote:

Competition Mode Question



If a, b, and c are consecutive integers, where \(a < b < c\), which of the following cannot be the value of \(c^2 - (a^2 + b^2)\)?


(A) -77
(B) -32
(C) -21
(D) -10
(E) 0




a, b, c are consecutive integer. So a = k, b = k+1, c= k+2

c^2 - a^2 - b^2 = (k+2)^2 - (k+1)^2 - k^2

= (2k+3) - k^2
= - [(k^2 - 2k +1) -4]
= - [(k-1)^2 - 2^2]
= -(k-3)(k+1)

So this equation can written as the -1* [product of two number a & b, in which a-b = 4]

I. -77 = -1 * 7 * 11. 11-7 =4. SUFF
II. -32 = -1 * 4 * 8. 8-4 =4. SUFF
III. -21 = -1 * 3 * 7. 7-3=4. SUFF
III. -10. INSUFF
IV. 0. SUFF

IMO D.
GMAT Club Bot
Re: If a, b, and c are consecutive integers, where a < b < c, which of the   [#permalink] 01 Mar 2020, 09:22
Display posts from previous: Sort by

If a, b, and c are consecutive integers, where a < b < c, which of the

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  





Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne