Last visit was: 19 Nov 2025, 15:28 It is currently 19 Nov 2025, 15:28
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
avatar
LinaNY
Joined: 06 Feb 2013
Last visit: 08 Jan 2014
Posts: 20
Own Kudos:
65
 [22]
Given Kudos: 3
Posts: 20
Kudos: 65
 [22]
7
Kudos
Add Kudos
15
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,366
 [10]
7
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
General Discussion
avatar
LinaNY
Joined: 06 Feb 2013
Last visit: 08 Jan 2014
Posts: 20
Own Kudos:
Given Kudos: 3
Posts: 20
Kudos: 65
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
778,366
 [1]
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,366
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
LinaNY
Bunuel


\(P(b)=\frac{b}{b+g}=?\)

Thanks, Bunuel.
Could you please clarify how the statement 1 "...the probability of selecting a boy will be 0.75" is different from the question itself "what is the probability that the child will be a boy". I'm stuck here because to me it looks like they provide the same information.

(1) says that "IF 25 boys are removed from the school, the probability of selecting a boy will be 0.75"
avatar
Pmar2012
Joined: 23 Jan 2013
Last visit: 27 Apr 2015
Posts: 6
Own Kudos:
Given Kudos: 4
Posts: 6
Kudos: 240
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
If a child is randomly selected from Columbus elementary school, what is the probability that the child will be a boy?

\(P(b)=\frac{b}{b+g}=?\)

(1) If 25 boys are removed from the school, the probability of selecting a boy will be 0.75 --> \(\frac{b-25}{(b-25)+g}=\frac{3}{4}\) --> \(b-3g=25\). Not sufficient.

(2) There are 35 more boys than there are girls --> \(g=b-35\). Not sufficient.

(1)+(2) We have two linear equation with two unknowns (\(b-3g=25\) and \(g=b-35\)), thus we can solve for both and get the value of \(\frac{b}{b+g}\). Sufficient.

Answer: C.


Hi Bunuel,

Can you please shed some light on why it would not be correct to state the following:

For the statement 1, p(girl)=(g/(b-25+g))=0.25.

Assuming this inference is correct, we can find the number of boys using a two equation,two unknowns approach.

Thank you!
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
778,366
 [2]
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,366
 [2]
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Pmar2012
Bunuel
If a child is randomly selected from Columbus elementary school, what is the probability that the child will be a boy?

\(P(b)=\frac{b}{b+g}=?\)

(1) If 25 boys are removed from the school, the probability of selecting a boy will be 0.75 --> \(\frac{b-25}{(b-25)+g}=\frac{3}{4}\) --> \(b-3g=25\). Not sufficient.

(2) There are 35 more boys than there are girls --> \(g=b-35\). Not sufficient.

(1)+(2) We have two linear equation with two unknowns (\(b-3g=25\) and \(g=b-35\)), thus we can solve for both and get the value of \(\frac{b}{b+g}\). Sufficient.

Answer: C.


Hi Bunuel,

Can you please shed some light on why it would not be correct to state the following:

For the statement 1, p(girl)=(g/(b-25+g))=0.25.

Assuming this inference is correct, we can find the number of boys using a two equation,two unknowns approach.

Thank you!

Yes, it's correct but if you simplify it you'd still get the same equation: \(b-3g=25\). Thus you'd still have only one equation with two unknowns.

Hope it's clear.
User avatar
chetan2u
User avatar
GMAT Expert
Joined: 02 Aug 2009
Last visit: 15 Nov 2025
Posts: 11,238
Own Kudos:
43,706
 [1]
Given Kudos: 335
Status:Math and DI Expert
Location: India
Concentration: Human Resources, General Management
GMAT Focus 1: 735 Q90 V89 DI81
Products:
Expert
Expert reply
GMAT Focus 1: 735 Q90 V89 DI81
Posts: 11,238
Kudos: 43,706
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
fitzpratik
If a child is randomly selected from Columbus elementary school, what is the probability that the child will be a boy?

(1) If 25 boys are removed from the school, the probability of selecting a boy will be 0.75

(2) There are 35 more boys than there are girls


Hi..
For getting a ratio here, you require all terms with variable.
But here by first look, you have a term without variable so none can be sufficient individually but let's see

1) \(\frac{b-25}{b+g-25}=0.75=\frac{3}{4}...... 4b-100=3b+3g-75....b=25+3g\)
Ratio can't be found
Insufficient
2) b=g+35
Again ratio cannot be found
Insuff

Combined..
You can find values of b and g and thus get ratio or PROBABILITY
35+g=3g+25.....2g=10...G=5
b=35+5=40..
Probability of picking boy is b/t=40/40+5=8/9..
Suff
C
User avatar
BrentGMATPrepNow
User avatar
Major Poster
Joined: 12 Sep 2015
Last visit: 31 Oct 2025
Posts: 6,739
Own Kudos:
Given Kudos: 799
Location: Canada
Expert
Expert reply
Posts: 6,739
Kudos: 35,354
Kudos
Add Kudos
Bookmarks
Bookmark this Post
LinaNY
If a child is randomly selected from Columbus elementary school, what is the probability that the child will be a boy?

(1) If 25 boys are removed from the school, the probability of selecting a boy will be 0.75

(2) There are 35 more boys than there are girls

Target question: What is the probability that the child will be a boy?
This is a good candidate for rephrasing the target question.
Let G = # of girls in the school
Let B = # of boys in the school
So, G + B = total number of children in the school
So, P(selected child is a boy) = B/(G + B)
REPHRASED target question: What is the value of B/(G + B)?

The video posted below has tips on rephrasing the target question

Statement 1: If 25 boys are removed from the school, the probability of selecting a boy will be 0.75.
So, the number of boys = B - 25, and the total number of children = G + (B - 25)
We can write: (B - 25)/(G + B - 25) = 3/4
Since we have a linear equation with TWO variables, there's no way to solve this equation for B and G. So, statement 1 is NOT SUFFICIENT

If you're not convinced, consider these two CONFLICTING cases:
Case a: B = 28 and G = 1. After 25 boys leave, there are 3 boys and 1 girl. So, P(boy) = 3/4 = 0.75, which satisfies statement 1. In this case, the answer to the REPHRASED target question is B/(G + B) = 28/(1 + 28) = 28/29
Case b: B = 31 and G = 2. After 25 boys leave, there are 6 boys and 2 girls. So, P(boy) = 6/8 = 0.75, which satisfies statement 1. In this case, the answer to the REPHRASED target question is B/(G + B) = 31/(2 + 31) = 31/33
Since we cannot answer the REPHRASED target question with certainty, statement 1 is NOT SUFFICIENT

Statement 2: There are 35 more boys than there are girls.
There are several CONFLICTING cases that satisfy statement 2. Here are two:
Case a: B = 36 and G = 1. In this case, the answer to the REPHRASED target question is B/(G + B) = 36/(1 + 36) = 36/37
Case b: B = 37 and G = 2. In this case, the answer to the REPHRASED target question is B/(G + B) = 37/(2 + 37) = 37/39
Since we cannot answer the REPHRASED target question with certainty, statement 2 is NOT SUFFICIENT

Statements 1 and 2 combined
From statement 1, we can write: (B - 25)/(G + B - 25) = 3/4
Cross multiply to get: 3(G + B - 25) = 4(B - 25)
Expand: 3G + 3B - 75 = 4B - 100
Rearrange to get: 3G - B = - 25

From statement 2, we can write: B = G + 35

At this point, we have two different linear equations with two variables. So, we COULD solve the system for B and G, which means we COULD answer the REPHRASED target question with certainty.
So, the combined statements are SUFFICIENT

Answer: C

RELATED VIDEOE
User avatar
CEdward
Joined: 11 Aug 2020
Last visit: 14 Apr 2022
Posts: 1,203
Own Kudos:
Given Kudos: 332
Posts: 1,203
Kudos: 272
Kudos
Add Kudos
Bookmarks
Bookmark this Post
St1 - If 25 boys are removed then the probability that a boy is chosen is 3/4

b - 25 / b + g = 3/4

1 equation, 2 unknowns, insufficient.

St2 - There are 35 more boys than girls.

b = 35 + g

Clearly insufficient.

st1 + st2
Sufficient

C.
User avatar
bumpbot
User avatar
Non-Human User
Joined: 09 Sep 2013
Last visit: 04 Jan 2021
Posts: 38,589
Own Kudos:
Posts: 38,589
Kudos: 1,079
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
Moderators:
Math Expert
105390 posts
496 posts