Join us for MBA Spotlight – The Top 20 MBA Fair      Schedule of Events | Register

It is currently 06 Jun 2020, 06:08

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

If a is a positive integer, and if the units digit of a^2 is 9 and the

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Find Similar Topics 
Intern
Intern
avatar
Joined: 12 Nov 2010
Posts: 18
If a is a positive integer, and if the units digit of a^2 is 9 and the  [#permalink]

Show Tags

New post 10 Feb 2011, 14:56
4
16
00:00
A
B
C
D
E

Difficulty:

  5% (low)

Question Stats:

86% (01:15) correct 14% (01:37) wrong based on 763 sessions

HideShow timer Statistics

If a is a positive integer, and if the units digit of a^2 is 9 and the units digit of (a+1)^2 is 4, what is the units digit of (a+2)^2?

A. 1
B. 3
C. 5
D. 6
C. 14

I guess I am just not reading this properly. I don't understand what they mean by units digit...
Most Helpful Expert Reply
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 64318
Re: If a is a positive integer, and if the units digit of a^2 is 9 and the  [#permalink]

Show Tags

New post 10 Feb 2011, 15:12
13
14
ChenggongMAS wrote:
If a is a positive integer, and if the units digit of a^2 is 9 and the units digit of (a+1)^2 is 4, what is the units digit of (a+2)^2?

A) 1
B) 3
C) 5
D) 6
C) 14

I guess I am just not reading this properly. I don't understand what they mean by units digit...


1234.567

1 - THOUSANDS
2 - HUNDREDS
3 - TENS
4 - UNITS
. - decimal point
5 - TENTHS
6 - HUNDREDTHS
7 - THOUSANDTHS

So thE units digit is the digit to the left of the decimal point or in integer it's the rightmost digit. For example: the units digit of 1.2 is 1 and the units digit of 13 is 3.

Back to the original question.
If a is a positive integer, and if the units digit of a^2 is 9 and the units digit of (a+1)^2 is 4, what is the units digit of (a+2)^2?

The units digit of a^2 is 9 --> the units digit of a itself is either 3 or 7 (3^2=9 and 7^2=49);
The units digit of (a+1)^2 is 4 --> the units digit of a+1 is either 2 or 8 (2^2=4 and 8^2=64), so the the units digit of a itself is either 2-1=1 or 8-1=7;

To satisfy both conditions the units digit of a must be 7. Now, a+2 will have the units digit equal to 7+2=9, thus the units digit of (a+2)^2, will be 1 (9^2=81).

Answer: A.

Check Number Theory chapter of Math Book for more: math-number-theory-88376.html
_________________
General Discussion
SVP
SVP
User avatar
P
Status: Top MBA Admissions Consultant
Joined: 24 Jul 2011
Posts: 2052
GMAT 1: 780 Q51 V48
GRE 1: Q800 V740
Re: If a is a positive integer, and if the units digit of a^2 is 9 and the  [#permalink]

Show Tags

New post 09 Aug 2011, 11:35
2
1
The units' digit is the first digit to the left of the decimal point.

For example, in 123.4567, the units digit is 3.
Similarly, in 234, the units digit is 4.

In the given question, if the units digit of a^2 is 9, it means the units digit of a can be 3 or 7 (because both 3^2 and 7^2 end in a units digit of 9). Now, the units digit of (a+1)^2 is given to be 4. This means the units digit of a must be 7 because the units digit of (7+1)^2 = 4, but the units digit of (3+1)^2 is not 4 (it is 6).

This means the units digit of a is 7, and therefore the units digit of a+2 is 9. So the units digit of (a+2)^2 = units digit of 9^2 = 1

The answer is therefore (A).
_________________
GyanOne [www.gyanone.com]| Premium MBA and MiM Admissions Consulting

Awesome Work | Honest Advise | Outstanding Results

Reach Out, Lets chat!
Email: info at gyanone dot com | +91 98998 31738 | Skype: gyanone.services
Senior Manager
Senior Manager
avatar
Status: Gonna rock this time!!!
Joined: 22 Jul 2012
Posts: 408
Location: India
GMAT 1: 640 Q43 V34
GMAT 2: 630 Q47 V29
WE: Information Technology (Computer Software)
Re: If a is a positive integer, and if the units digit of a^2 is 9 and the  [#permalink]

Show Tags

New post 06 Feb 2013, 18:35
Bunuel wrote:
ChenggongMAS wrote:
If a is a positive integer, and if the units digit of a^2 is 9 and the units digit of (a+1)^2 is 4, what is the units digit of (a+2)^2?

A) 1
B) 3
C) 5
D) 6
C) 14

I guess I am just not reading this properly. I don't understand what they mean by units digit...


1234.567

1 - THOUSANDS
2 - HUNDREDS
3 - TENS
4 - UNITS
. - decimal point
5 - TENTHS
6 - HUNDREDTHS
7 - THOUSANDTHS

So th units digit is the digit to the left of the decimal point or in integer it's the rightmost digit. For example: the units digit of 1.2 is 1 and the units digit of 13 is 3.

Back to the original question.
If a is a positive integer, and if the units digit of a^2 is 9 and the units digit of (a+1)^2 is 4, what is the units digit of (a+2)^2?

The units digit of a^2 is 9 --> the units digit of a itself is either 3 or 7 (3^2=9 and 7^2=49);
The units digit of (a+1)^2 is 4 --> the units digit of a+1 is either 2 or 8 (2^2=4 and 8^2=64), so the the units digit of a itself is either 2-1=1 or 8-1=7;

To satisfy both conditions the units digit of a must be 7. Now, a+2 will have the units digit equal to 7+2=9, thus the units digit of (a+2)^2, will be 1 (9^2=81).

Answer: A.

Check Number Theory chapter of Math Book for more: math-number-theory-88376.html


I was wondering if there's any algebraic soln to this question.
_________________
hope is a good thing, maybe the best of things. And no good thing ever dies.

Who says you need a 700 ?Check this out : http://gmatclub.com/forum/who-says-you-need-a-149706.html#p1201595

My GMAT Journey : http://gmatclub.com/forum/end-of-my-gmat-journey-149328.html#p1197992
Intern
Intern
avatar
Joined: 08 Oct 2012
Posts: 26
Re: If a is a positive integer, and if the units digit of a^2 is 9 and the  [#permalink]

Show Tags

New post 08 Feb 2013, 12:36
2
1
Sachin9 wrote:
Bunuel wrote:

I was wondering if there's any algebraic soln to this question.


1. Units digit of a^2 is 9.

2. (a+1)^2 = a^2 + 2a + 1 .....UD of (a^2) + UD of (2a) + 1 = 4 ....9+1 +UD(2a)=4 .....10+UD(2a) = 4...therefore, a = 2 or 7

Based on 1 and 2, a can't be 2, so it has to be 7. We can calculate (a+2)^2

(a+2)^2 = a^2 + 4a + 4 = a^2 + 2(2a) +4 = UD(a^2)+2(UD of 2a) +4 ..this gives you units digit of 1...and thats the answer.
Retired Moderator
avatar
Joined: 29 Oct 2013
Posts: 245
Concentration: Finance
GPA: 3.7
WE: Corporate Finance (Retail Banking)
GMAT ToolKit User
Re: If a is a positive integer, and if the units digit of a^2 is 9 and the  [#permalink]

Show Tags

New post 12 May 2014, 02:05
Hi Bunuel, This one too is tagged as 'hard' in GMATPrep. While it is marked as sub 600 here. Thanks!
_________________
Please contact me for super inexpensive quality private tutoring

My journey V46 and 750 -> http://gmatclub.com/forum/my-journey-to-46-on-verbal-750overall-171722.html#p1367876
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 64318
Re: If a is a positive integer, and if the units digit of a^2 is 9 and the  [#permalink]

Show Tags

New post 12 May 2014, 02:14
1
Retired Moderator
avatar
Joined: 29 Oct 2013
Posts: 245
Concentration: Finance
GPA: 3.7
WE: Corporate Finance (Retail Banking)
GMAT ToolKit User
Re: If a is a positive integer, and if the units digit of a^2 is 9 and the  [#permalink]

Show Tags

New post Updated on: 03 Jun 2014, 18:23
Bunuel, Thanks for your reply. Yup, it does!

However, I have not seen this logic hold true in every case. What are the percentage ranges for sub600, 600-700, +700 etc? This will help me point out incorrect tags if any so as to improve this forum.

And quite frankly I didnt find this question that easy. But cannot argue against the statistics unless those 101 users somehow were not representative of an average test taker. Moreover, I have heard GMAC also categorizes questions based on how many test takers got it right/wrong. With hundreds of thousands taking the gmat each year they are likely to have bigger data.

I am just trying to understand tagging here. Thanks for your understanding.
_________________
Please contact me for super inexpensive quality private tutoring

My journey V46 and 750 -> http://gmatclub.com/forum/my-journey-to-46-on-verbal-750overall-171722.html#p1367876

Originally posted by NoHalfMeasures on 12 May 2014, 02:33.
Last edited by NoHalfMeasures on 03 Jun 2014, 18:23, edited 1 time in total.
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 64318
Re: If a is a positive integer, and if the units digit of a^2 is 9 and the  [#permalink]

Show Tags

New post 12 May 2014, 02:40
MensaNumber wrote:
Bunuel, Thanks for your reply. Yup, it does!

However, I have not seen this logic hold true in every case. What are the percentage ranges for sub600, 600-700, +700 etc? This will help me point out incorrect tags if any so as to improve this forum.

And quite frankly I didnt find this question that easy. But cannot argue against the statistics unless those 101 users somehow were not representative of an average test taker. Moreover, I have hard GMAC also categorizes questions based on how many test takers got it right/wrong. With hundreds of thousands taking the gmat each year they are likely to have bigger data.

I am just trying to understand tagging here. Thanks for your understanding.


Well, you can judge the difficulty level of a question based on the statistics and not on the tags. I agree that GMAC has larger data and their stats might be more representative. Having said that I must add that still the difficulty level is quite subjective issue.
_________________
Intern
Intern
avatar
Joined: 14 Jul 2016
Posts: 1
Re: If a is a positive integer, and if the units digit of a^2 is 9 and the  [#permalink]

Show Tags

New post 14 Jul 2016, 08:55
Gentlemen,

Good afternoon.
It´s my first time in the Forum - I am glad to see such a nice resource! :o


Question: How can I be sure that if the units digit of (a^2 ) = 9 , for sure the units digit of "a" must be 3 or 7 ?

I have followed the answer by expanding the equations and adding the units digits, which I did too, but took quite a longer time.

My first thought when I saw the quation was this " units digit of "a" must e 7 or 9 " approach, however it just sounded in my mind like good a guess - how can I be sure that no other number squared from 0 to infinite will result in a number with 9 ,( or x, or y) in the units digit ? What theory am I missing, guys?

Thank you and luck to all!
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 64318
Re: If a is a positive integer, and if the units digit of a^2 is 9 and the  [#permalink]

Show Tags

New post 14 Jul 2016, 09:15
itabra wrote:
Gentlemen,

Good afternoon.
It´s my first time in the Forum - I am glad to see such a nice resource! :o


Question: How can I be sure that if the units digit of (a^2 ) = 9 , for sure the units digit of "a" must be 3 or 7 ?

I have followed the answer by expanding the equations and adding the units digits, which I did too, but took quite a longer time.

My first thought when I saw the quation was this " units digit of "a" must e 7 or 9 " approach, however it just sounded in my mind like good a guess - how can I be sure that no other number squared from 0 to infinite will result in a number with 9 ,( or x, or y) in the units digit ? What theory am I missing, guys?

Thank you and luck to all!


If x is an integer to get the units digit of x^2 the only thing we need to know is the units digit of x itself. There are ten digits, so we can have only the following cases:

0^2 = 0
1^2 = 1
2^2 = 4
3^2 = 9
4^2 = 16
5^2 = 25
6^2 = 36
7^2 = 49
8^2 = 64
9^2 = 81

As you can see only if an integer ends with 3 or 9 its square will have the units digit of 9.
_________________
Director
Director
User avatar
B
Joined: 04 Jun 2016
Posts: 532
GMAT 1: 750 Q49 V43
Re: If a is a positive integer, and if the units digit of a^2 is 9 and the  [#permalink]

Show Tags

New post 22 Jul 2016, 09:03
ChenggongMAS wrote:
If a is a positive integer, and if the units digit of a^2 is 9 and the units digit of (a+1)^2 is 4, what is the units digit of (a+2)^2?

A. 1
B. 3
C. 5
D. 6
C. 14

I guess I am just not reading this properly. I don't understand what they mean by units digit...


\(a^2=9\) ----> only possible if unit digit is 3 or 7 (\(3^2=9 ; 7^2=49\))
\((a+1)^2=4\); means that a is 7 because (7+1) is 8 and \(8^2=64\) (Unit digit is 4)
now a+2 = 7+2 =9
\(9^2= 81\) (unit digit is 1)
ANSWER is A
_________________
Posting an answer without an explanation is "GOD COMPLEX". The world doesn't need any more gods. Please explain you answers properly.
FINAL GOODBYE :- 17th SEPTEMBER 2016. .. 16 March 2017 - I am back but for all purposes please consider me semi-retired.
Target Test Prep Representative
User avatar
G
Status: Head GMAT Instructor
Affiliations: Target Test Prep
Joined: 04 Mar 2011
Posts: 2799
Re: If a is a positive integer, and if the units digit of a^2 is 9 and the  [#permalink]

Show Tags

New post 06 Apr 2017, 09:05
ChenggongMAS wrote:
If a is a positive integer, and if the units digit of a^2 is 9 and the units digit of (a+1)^2 is 4, what is the units digit of (a+2)^2?

A. 1
B. 3
C. 5
D. 6
C. 14


Since the units digit of a^2 is 9, the units digit of a is either 3 or 7. However, since the units digit of (a+1)^2 is 4, we see that the units digit of a must equal 7, since then the units digit of a + 1 is 8 and 8^2 = 64 (had the units digit of a been 3, then the units digit of a + 1 would have been 4, but 4^2 = 16). Thus, the units digit of a + 2 is 9, and since 9^2 = 81, the units digit of (a + 2)^2 is 1.

Answer: A
_________________

Jeffrey Miller

Head of GMAT Instruction

Jeff@TargetTestPrep.com
TTP - Target Test Prep Logo
214 Reviews

5-STAR RATED ONLINE GMAT QUANT SELF STUDY COURSE

NOW WITH GMAT VERBAL (PRE-BETA)

See why Target Test Prep is the top rated GMAT quant course on GMAT Club. Read Our Reviews

If you find one of my posts helpful, please take a moment to click on the "Kudos" button.

Board of Directors
User avatar
D
Status: QA & VA Forum Moderator
Joined: 11 Jun 2011
Posts: 5021
Location: India
GPA: 3.5
WE: Business Development (Commercial Banking)
GMAT ToolKit User
Re: If a is a positive integer, and if the units digit of a^2 is 9 and the  [#permalink]

Show Tags

New post 06 Apr 2017, 10:06
ChenggongMAS wrote:
If a is a positive integer, and if the units digit of a^2 is 9 and the units digit of (a+1)^2 is 4, what is the units digit of (a+2)^2?

A. 1
B. 3
C. 5
D. 6
C. 14

I guess I am just not reading this properly. I don't understand what they mean by units digit...



Since, units digit of \(a^2\) is \(9\) : a can be 3 or 7

Since, units digit of \((a+1)^2\) is \(4\) : a must be 7

Thus, \((a+2)^2 = (7+2)^2 = 81\) , so units digit is 1

Answer must be (A) 1
_________________
Thanks and Regards

Abhishek....

PLEASE FOLLOW THE RULES FOR POSTING IN QA AND VA FORUM AND USE SEARCH FUNCTION BEFORE POSTING NEW QUESTIONS

How to use Search Function in GMAT Club | Rules for Posting in QA forum | Writing Mathematical Formulas |Rules for Posting in VA forum | Request Expert's Reply ( VA Forum Only )
Manager
Manager
avatar
B
Joined: 24 Jun 2017
Posts: 113
Re: If a is a positive integer, and if the units digit of a^2 is 9 and the  [#permalink]

Show Tags

New post 02 Jul 2017, 17:05
Another possible solution without the substitution based on a logical equation:
a^2= x9 (where x - other place values, tenths, hundredths and so on)
(a + 1)^2 = a^2 + 2a + 1 = x4 ,so x9 + 1 + 2a = x0 + 2a = x4
(a + 2)^2 = a^2 + 4a + 4 = x9 +4 + 4а = x3 + 8 = x1 (result of logical equation compared to the above one, with 2а)
VP
VP
User avatar
V
Joined: 18 Dec 2017
Posts: 1381
Location: United States (KS)
GMAT 1: 600 Q46 V27
Premium Member CAT Tests
Re: If a is a positive integer, and if the units digit of a^2 is 9 and the  [#permalink]

Show Tags

New post 13 Jul 2019, 08:42
ChenggongMAS wrote:
If a is a positive integer, and if the units digit of a^2 is 9 and the units digit of (a+1)^2 is 4, what is the units digit of (a+2)^2?

A. 1
B. 3
C. 5
D. 6
C. 14

I guess I am just not reading this properly. I don't understand what they mean by units digit...


My Approach. 3 and 7 both give unit digit as 9 when squared. but 4 and 8 (a+1 basically) gives 6 and 4 when squared. Means 7 is a possible value. And when 9 is squared it is 81. Hence 1.
_________________
The Moment You Think About Giving Up, Think Of The Reason Why You Held On So Long

Why You Don’t Deserve A 700 On Your GMAT

Learn from the Legend himself: All GMAT Ninja LIVE YouTube videos by topic
You are missing on great learning if you don't know what this is: Project SC Butler
Senior Manager
Senior Manager
User avatar
G
Joined: 10 Aug 2018
Posts: 280
Location: India
Concentration: Strategy, Operations
WE: Operations (Energy and Utilities)
Reviews Badge
Re: If a is a positive integer, and if the units digit of a^2 is 9 and the  [#permalink]

Show Tags

New post 14 Jul 2019, 08:47
Bunuel

How are you always correct? I am just asking out of curiosity?

Is there any post in GC where you have done any mistake while posting an answer?

Btw amazing man. I wish I had a brain like you.
_________________
On the way to get into the B-school and I will not leave it until I win. WHATEVER IT TAKES.

" I CAN AND I WILL"
Manager
Manager
avatar
B
Joined: 31 Mar 2019
Posts: 91
Re: If a is a positive integer, and if the units digit of a^2 is 9 and the  [#permalink]

Show Tags

New post 26 May 2020, 23:02
It’s simple ,

Think of an integer whose square will have 9 at units place
Either 3 or 7 => any integer having 3 or 7 at units place

Now , check the given part ( integer + 1)^2 is 4 => so , the integer must be 7 because 8^2 is having 4 at units place


Therefore ,( 7+2 )^2= 9^2 => 1 will be at units place .

Answer is A

Posted from my mobile device
GMAT Club Bot
Re: If a is a positive integer, and if the units digit of a^2 is 9 and the   [#permalink] 26 May 2020, 23:02

If a is a positive integer, and if the units digit of a^2 is 9 and the

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  





Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne