GMAT Question of the Day - Daily to your Mailbox; hard ones only

 It is currently 19 Feb 2019, 13:58

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

## Events & Promotions

###### Events & Promotions in February
PrevNext
SuMoTuWeThFrSa
272829303112
3456789
10111213141516
17181920212223
242526272812
Open Detailed Calendar
• ### Free GMAT Prep Hour

February 20, 2019

February 20, 2019

08:00 PM EST

09:00 PM EST

Strategies and techniques for approaching featured GMAT topics. Wednesday, February 20th at 8 PM EST

February 21, 2019

February 21, 2019

10:00 PM PST

11:00 PM PST

Kick off your 2019 GMAT prep with a free 7-day boot camp that includes free online lessons, webinars, and a full GMAT course access. Limited for the first 99 registrants! Feb. 21st until the 27th.

# If ab < 7, is b < 1?

Author Message
TAGS:

### Hide Tags

Intern
Joined: 21 Nov 2013
Posts: 39
If ab < 7, is b < 1?  [#permalink]

### Show Tags

17 Jan 2014, 03:25
2
1
00:00

Difficulty:

5% (low)

Question Stats:

88% (01:14) correct 12% (01:43) wrong based on 95 sessions

### HideShow timer Statistics

If ab < 7, is b < 1?

(1) a > 7
(2) b < 7

My question is, may I add these inequalities in the way I did or was I just lucky with this approach, and "number picking" is the right approach for these questions to solve them in general? OA explanation suggests number picking for both statements. I feel this is much clearer. Thanks for your comments and help.

Statement 1: 7 < a This tells me "a" is a positive number bigger than 7.
If I add 7 < a to ab < 7, I will get:
ab + 7 < 7 + a deducting on both sides 7
ab < a Normally, I couldn't divide by "a", cause I wouldn't know "a's" sign. But here we are told it is positive and bigger than 7. So I divide by "a" know the inequality sign will not flip.
b < 1 This is what we wanted to prove. SUFFICIENT

Statement 2: This just tells me b is smaller than 7. It could be bigger or smaller than 1.
If I add b < 7 to ab < 7, I will get:
ab + b < 14 I could factor out "b"
b (a +1) < 14 However, this still doesn't help me in anyway to figure out if "b" is smaller than 1. If "a" was say 10 and "b" was 2, then we'd have 22 < 14 which is wrong. If "a" was say 10 and "b" was -1, then we'd have -22 < 14 which would be right. INSUFFICIENT
Director
Joined: 03 Feb 2013
Posts: 846
Location: India
Concentration: Operations, Strategy
GMAT 1: 760 Q49 V44
GPA: 3.88
WE: Engineering (Computer Software)
Re: If ab < 7, is b < 1?  [#permalink]

### Show Tags

17 Jan 2014, 03:36
BabySmurf wrote:
If ab < 7, is b < 1?

1. a > 7
2. b < 7

My question is, may I add these inequalities in the way I did or was I just lucky with this approach, and "number picking" is the right approach for these questions to solve them in general? OA explanation suggests number picking for both statements. I feel this is much clearer. Thanks for your comments and help.

Statement 1: 7 < a This tells me "a" is a positive number bigger than 7.
If I add 7 < a to ab < 7, I will get:
ab + 7 < 7 + a deducting on both sides 7
ab < a Normally, I couldn't divide by "a", cause I wouldn't know "a's" sign. But here we are told it is positive and bigger than 7. So I divide by "a" know the inequality sign will not flip.
b < 1 This is what we wanted to prove. SUFFICIENT

Statement 2: This just tells me b is smaller than 7. It could be bigger or smaller than 1.
If I add b < 7 to ab < 7, I will get:
ab + b < 14 I could factor out "b"
b (a +1) < 14 However, this still doesn't help me in anyway to figure out if "b" is smaller than 1. If "a" was say 10 and "b" was 2, then we'd have 22 < 14 which is wrong. If "a" was say 10 and "b" was -1, then we'd have -22 < 14 which would be right. INSUFFICIENT

Most of the inequality questions, its better to use numbers and solve them, but it also depends on how difficult is the problem.

Here, I guess assumption of numbers is not required as this particular question is fairly simple.

Sometimes, we have 3-5 variables, and at that time, it is advisable to use the numbers to solve it faster.

One more important thing, use numbers to ELIMINATE options and NOT TO SELECT options. It is more of a negative strategy.
_________________

Thanks,
Kinjal

My Application Experience : http://gmatclub.com/forum/hardwork-never-gets-unrewarded-for-ever-189267-40.html#p1516961

Math Expert
Joined: 02 Sep 2009
Posts: 52971
Re: If ab < 7, is b < 1?  [#permalink]

### Show Tags

17 Jan 2014, 03:37
BabySmurf wrote:
If ab < 7, is b < 1?

(1) a > 7
(2) b < 7

My question is, may I add these inequalities in the way I did or was I just lucky with this approach, and "number picking" is the right approach for these questions to solve them in general? OA explanation suggests number picking for both statements. I feel this is much clearer. Thanks for your comments and help.

Statement 1: 7 < a This tells me "a" is a positive number bigger than 7.
If I add 7 < a to ab < 7, I will get:
ab + 7 < 7 + a deducting on both sides 7
ab < a Normally, I couldn't divide by "a", cause I wouldn't know "a's" sign. But here we are told it is positive and bigger than 7. So I divide by "a" know the inequality sign will not flip.
b < 1 This is what we wanted to prove. SUFFICIENT

Statement 2: This just tells me b is smaller than 7. It could be bigger or smaller than 1.
If I add b < 7 to ab < 7, I will get:
ab + b < 14 I could factor out "b"
b (a +1) < 14 However, this still doesn't help me in anyway to figure out if "b" is smaller than 1. If "a" was say 10 and "b" was 2, then we'd have 22 < 14 which is wrong. If "a" was say 10 and "b" was -1, then we'd have -22 < 14 which would be right. INSUFFICIENT

You can only add inequalities when their signs are in the same direction:

If $$a>b$$ and $$c>d$$ (signs in same direction: $$>$$ and $$>$$) --> $$a+c>b+d$$.
Example: $$3<4$$ and $$2<5$$ --> $$3+2<4+5$$.

You can only apply subtraction when their signs are in the opposite directions:

If $$a>b$$ and $$c<d$$ (signs in opposite direction: $$>$$ and $$<$$) --> $$a-c>b-d$$ (take the sign of the inequality you subtract from).
Example: $$3<4$$ and $$5>1$$ --> $$3-5<4-1$$.

Similar question to practice: if-xy-4-is-x-2-1-y-1-2-y-x-129251.html

Hope this helps.
_________________
Non-Human User
Joined: 09 Sep 2013
Posts: 9851
Re: If ab < 7, is b < 1?  [#permalink]

### Show Tags

14 Apr 2018, 04:40
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
Re: If ab < 7, is b < 1?   [#permalink] 14 Apr 2018, 04:40
Display posts from previous: Sort by