Last visit was: 18 Nov 2025, 20:32 It is currently 18 Nov 2025, 20:32
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
avenger
Joined: 30 Aug 2007
Last visit: 29 Apr 2008
Posts: 24
Own Kudos:
64
 [39]
Posts: 24
Kudos: 64
 [39]
1
Kudos
Add Kudos
38
Bookmarks
Bookmark this Post
User avatar
ashkrs
Joined: 08 Jun 2007
Last visit: 21 Feb 2019
Posts: 282
Own Kudos:
340
 [3]
GMAT 1: 680 Q48 V35
Posts: 282
Kudos: 340
 [3]
3
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
Juaz
Joined: 18 Jul 2006
Last visit: 06 Oct 2008
Posts: 241
Own Kudos:
Posts: 241
Kudos: 307
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
avenger
Joined: 30 Aug 2007
Last visit: 29 Apr 2008
Posts: 24
Own Kudos:
Posts: 24
Kudos: 64
Kudos
Add Kudos
Bookmarks
Bookmark this Post
OA is A i.e. (None).

Thanks
User avatar
piyushksharma
Joined: 21 Feb 2012
Last visit: 21 Mar 2019
Posts: 52
Own Kudos:
Given Kudos: 15
Location: Canada
Concentration: Finance, General Management
GMAT 1: 600 Q49 V23
GPA: 3.8
WE:Information Technology (Computer Software)
GMAT 1: 600 Q49 V23
Posts: 52
Kudos: 456
Kudos
Add Kudos
Bookmarks
Bookmark this Post
avenger
Q25)
If k and t are integers and k^2 – t^2 is an odd integer, which of the following must be an even integer?

I. k + t + 2
II. k^2 + 2kt + t^2
III. k^2 + t^2

(a) None
(b) I only
(c) II only
(d) III only
(e) I, II, and III

I have a doubt regarding option(III) of the stem,below is my explanation:
Given : K^2-t^2--> odd
it means (k+t)(k-t) both are odd.
take option 3 we have to chek whether k^2+t^2 is odd or even.
k^2+t^2=(k+t)^2-(k-t)^2
= k^2+t^2+2kt-k^2-t^2+2kt
=4kt
Here as 4 is an even number, and any odd number multiplied by an even results in an even number.

Please let me know whether this is correct as i had interpreted or not. and provide a suitable explanation.
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 18 Nov 2025
Posts: 105,355
Own Kudos:
778,088
 [1]
Given Kudos: 99,964
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,355
Kudos: 778,088
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
piyushksharma
avenger
Q25)
If k and t are integers and k^2 – t^2 is an odd integer, which of the following must be an even integer?

I. k + t + 2
II. k^2 + 2kt + t^2
III. k^2 + t^2

(a) None
(b) I only
(c) II only
(d) III only
(e) I, II, and III

I have a doubt regarding option(III) of the stem,below is my explanation:
Given : K^2-t^2--> odd
it means (k+t)(k-t) both are odd.
take option 3 we have to chek whether k^2+t^2 is odd or even.
k^2+t^2=(k+t)^2-(k-t)^2
= k^2+t^2+2kt-k^2-t^2+2kt
=4kt

Here as 4 is an even number, and any odd number multiplied by an even results in an even number.

Please let me know whether this is correct as i had interpreted or not. and provide a suitable explanation.

The red part is not correct. k^2+t^2 does not equal to 4kt.

If k and t are integers and k^2 – t^2 is an odd integer, which of the following must be an even integer?

I. k + t + 2
II. k^2 + 2kt + t^2
III. k^2 + t^2

A. None
B. I only
C. II only
D. III only
E. I, II, and III

k^2–t^2 is an odd integer means that either k is even and t is odd or k is odd and t is even.

Check all options:
I. k + t + 2 --> even+odd+even=odd or odd+even+even=odd. Discard;
II. k^2 + 2kt + t^2 --> even+even+odd=odd or odd+even+even=odd. Discard;
III. k^2 + t^2 --> even+odd=odd or odd+even=odd. Discard.

Answer: A.
User avatar
piyushksharma
Joined: 21 Feb 2012
Last visit: 21 Mar 2019
Posts: 52
Own Kudos:
Given Kudos: 15
Location: Canada
Concentration: Finance, General Management
GMAT 1: 600 Q49 V23
GPA: 3.8
WE:Information Technology (Computer Software)
GMAT 1: 600 Q49 V23
Posts: 52
Kudos: 456
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
piyushksharma
avenger
Q25)
If k and t are integers and k^2 – t^2 is an odd integer, which of the following must be an even integer?

I. k + t + 2
II. k^2 + 2kt + t^2
III. k^2 + t^2

(a) None
(b) I only
(c) II only
(d) III only
(e) I, II, and III

I have a doubt regarding option(III) of the stem,below is my explanation:
Given : K^2-t^2--> odd
it means (k+t)(k-t) both are odd.
take option 3 we have to chek whether k^2+t^2 is odd or even.
k^2+t^2=(k+t)^2-(k-t)^2
= k^2+t^2+2kt-k^2-t^2+2kt
=4kt

Here as 4 is an even number, and any odd number multiplied by an even results in an even number.

Please let me know whether this is correct as i had interpreted or not. and provide a suitable explanation.

The red part is not correct. k^2+t^2 does not equal to 4kt.

If k and t are integers and k^2 – t^2 is an odd integer, which of the following must be an even integer?

I. k + t + 2
II. k^2 + 2kt + t^2
III. k^2 + t^2

A. None
B. I only
C. II only
D. III only
E. I, II, and III

k^2–t^2 is an odd integer means that either k is even and t is odd or k is odd and t is even.

Check all options:
I. k + t + 2 --> even+odd+even=odd or odd+even+even=odd. Discard;
II. k^2 + 2kt + t^2 --> even+even+odd=odd or odd+even+even=odd. Discard;
III. k^2 + t^2 --> even+odd=odd or odd+even=odd. Discard.

Answer: A.
Thanks, i misinterpreted the option (III),rather i solved it for k^2 - t^2.
avatar
mamathak
Joined: 14 Aug 2012
Last visit: 21 Aug 2013
Posts: 6
Own Kudos:
Given Kudos: 11
Posts: 6
Kudos: 1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
i have chosen to solve using fact that since k^2 - t^2 is odd, both K+T and K-T should be odd.
Making this choice, i get that both options 1 and 2 are odd
1) k+t+2 means odd number + 2 = odd number
2) (k+t)^2 means (odd)^2 = odd number
3) k^2 + t^2 = ((k+t)^2 + (k-t)^2)/2 => (odd + odd)/2 = even

so, result is (1) and (2) are odd while (3) is even, since this combination is not part of any answer, chose NONE.

Is this approach correct?
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 18 Nov 2025
Posts: 105,355
Own Kudos:
Given Kudos: 99,964
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,355
Kudos: 778,088
Kudos
Add Kudos
Bookmarks
Bookmark this Post
mamathak
i have chosen to solve using fact that since k^2 - t^2 is odd, both K+T and K-T should be odd.
Making this choice, i get that both options 1 and 2 are odd
1) k+t+2 means odd number + 2 = odd number
2) (k+t)^2 means (odd)^2 = odd number
3) k^2 + t^2 = ((k+t)^2 + (k-t)^2)/2 => (odd + odd)/2 = even

so, result is (1) and (2) are odd while (3) is even, since this combination is not part of any answer, chose NONE.

Is this approach correct?

No, that's NOT correct.

k^2–t^2 is an odd integer means that either k is even and t is odd or k is odd and t is even.

Check here: if-k-and-t-are-integers-and-k-2-t-2-is-an-odd-integer-53248.html#p1082758

Hope it helps.
User avatar
subhendu009
Joined: 22 Jan 2010
Last visit: 13 Dec 2013
Posts: 17
Own Kudos:
Given Kudos: 3
Location: India
Concentration: Finance, Technology
GPA: 3.5
WE:Programming (Telecommunications)
Posts: 17
Kudos: 114
Kudos
Add Kudos
Bookmarks
Bookmark this Post
If k and t are integers and k^2 – t^2 is an odd integer, which of the following must be an even integer?

I. k + t + 2
II. k^2 + 2kt + t^2
III. k^2 + t^2

A. None
B. I only
C. II only
D. III only
E. I, II, and III

k^2 -t^2 = odd
so,if k is even,t will be odd.

I. k+t+2 = even+odd+2 = odd
II. k^2 + 2kt+t^2 = even + even + odd = odd
III. k^2 + t^2 = even + odd = odd

Hence answer will be option A.
_________________________________________

Press KUDOS if you like my post. :
User avatar
Virgilius
Joined: 15 Feb 2013
Last visit: 25 May 2016
Posts: 25
Own Kudos:
61
 [2]
Given Kudos: 11
Status:Currently Preparing the GMAT
Location: United States
GMAT 1: 550 Q47 V23
GPA: 3.7
WE:Analyst (Consulting)
GMAT 1: 550 Q47 V23
Posts: 25
Kudos: 61
 [2]
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
This problem mobilizes addition, substraction and multiplication rules of odd and even integers so knowing your rules will be the key to helping you solve this correctly. :)

First of all, \(k^2 - t^2\) can be rewritten as \((k-t)*(k+t)\)

If you're unsure about the notation, just develop \((k-t)*(k+t)\).

Now, assuming that \(k^2 - t^2\) = \((k-t)*(k+t)\) is odd, then according to the following rule :

odd * odd = odd (1)

We'll get \(k-t\) is odd and \(k+t\) is odd, which is extremely helpful since, if you notice the answer choices, all of them revolve around \(k+t\). So let's go through them one by one :

I. \(k+t+2\).

Using parenthesis to isolate \(k+t\), we get \((k+t)+2\) which is a sum involving an odd number and an even number. So, according to the following rule :

odd + even = odd (2)

Which means that \(k+t+2\) is odd. So answer I is not possible. (Since we're looking for an even result)

II. \(k^2 + 2kt + t^2\)

Now this answer choice may seem intimidating, but it actually isn't. Since \(k^2 + 2kt + t^2\) is equal to \((k+t)^2\). And since \(k+t\) is odd, then its square will be odd as well (rule 1). So answer II is also not possible.

III.\(k^2 + t^2\)

Once again, this answer choice may seem intimidating since you have no data on k nor t. But, looking at answer choice II., \(k^2+t^2\) is actually equal to \((k+t)^2 - 2kt\).
This is a difference between an odd number \((k+t)^2\) and an even number \(2kt\), so according to rule 2, the result will be odd. So answer III. is also not possible.

As such, the only correct answer to this question is answer A.

Hope that helped. :)
avatar
HKHR
Joined: 31 Mar 2013
Last visit: 27 Apr 2023
Posts: 43
Own Kudos:
Given Kudos: 110
Location: India
GPA: 3.02
Posts: 43
Kudos: 79
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
piyushksharma
avenger
Q25)
If k and t are integers and k^2 – t^2 is an odd integer, which of the following must be an even integer?

I. k + t + 2
II. k^2 + 2kt + t^2
III. k^2 + t^2

(a) None
(b) I only
(c) II only
(d) III only
(e) I, II, and III

I have a doubt regarding option(III) of the stem,below is my explanation:
Given : K^2-t^2--> odd
it means (k+t)(k-t) both are odd.
take option 3 we have to chek whether k^2+t^2 is odd or even.
k^2+t^2=(k+t)^2-(k-t)^2
= k^2+t^2+2kt-k^2-t^2+2kt
=4kt

Here as 4 is an even number, and any odd number multiplied by an even results in an even number.

Please let me know whether this is correct as i had interpreted or not. and provide a suitable explanation.

The red part is not correct. k^2+t^2 does not equal to 4kt.

If k and t are integers and k^2 – t^2 is an odd integer, which of the following must be an even integer?

I. k + t + 2
II. k^2 + 2kt + t^2
III. k^2 + t^2

A. None
B. I only
C. II only
D. III only
E. I, II, and III

k^2–t^2 is an odd integer means that either k is even and t is odd or k is odd and t is even.

Check all options:
I. k + t + 2 --> even+odd+even=odd or odd+even+even=odd. Discard;
II. k^2 + 2kt + t^2 --> even+even+odd=odd or odd+even+even=odd. Discard;
III. k^2 + t^2 --> even+odd=odd or odd+even=odd. Discard.

Answer: A.

Hi Bunuel,
You've mentioned that if k^2–t^2 is an odd integer means that either k is even and t is odd or k is odd and t is even.

Isn't a 3rd case also possible where K is odd and T is 0?
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 18 Nov 2025
Posts: 105,355
Own Kudos:
Given Kudos: 99,964
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,355
Kudos: 778,088
Kudos
Add Kudos
Bookmarks
Bookmark this Post
emailmkarthik
Bunuel
piyushksharma

If k and t are integers and k^2 – t^2 is an odd integer, which of the following must be an even integer?

I. k + t + 2
II. k^2 + 2kt + t^2
III. k^2 + t^2

(a) None
(b) I only
(c) II only
(d) III only
(e) I, II, and III

I have a doubt regarding option(III) of the stem,below is my explanation:
Given : K^2-t^2--> odd
it means (k+t)(k-t) both are odd.
take option 3 we have to chek whether k^2+t^2 is odd or even.
k^2+t^2=(k+t)^2-(k-t)^2
= k^2+t^2+2kt-k^2-t^2+2kt
=4kt

Here as 4 is an even number, and any odd number multiplied by an even results in an even number.

Please let me know whether this is correct as i had interpreted or not. and provide a suitable explanation.

The red part is not correct. k^2+t^2 does not equal to 4kt.

If k and t are integers and k^2 – t^2 is an odd integer, which of the following must be an even integer?

I. k + t + 2
II. k^2 + 2kt + t^2
III. k^2 + t^2

A. None
B. I only
C. II only
D. III only
E. I, II, and III

k^2–t^2 is an odd integer means that either k is even and t is odd or k is odd and t is even.

Check all options:
I. k + t + 2 --> even+odd+even=odd or odd+even+even=odd. Discard;
II. k^2 + 2kt + t^2 --> even+even+odd=odd or odd+even+even=odd. Discard;
III. k^2 + t^2 --> even+odd=odd or odd+even=odd. Discard.

Answer: A.

Hi Bunuel,
You've mentioned that if k^2–t^2 is an odd integer means that either k is even and t is odd or k is odd and t is even.

Isn't a 3rd case also possible where K is odd and T is 0?

Well, since 0 is an even number, then this scenario falls into the case when k=odd and t=even.
avatar
HKHR
Joined: 31 Mar 2013
Last visit: 27 Apr 2023
Posts: 43
Own Kudos:
Given Kudos: 110
Location: India
GPA: 3.02
Posts: 43
Kudos: 79
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Thank you, Bunuel.
User avatar
Abhishek009
User avatar
Board of Directors
Joined: 11 Jun 2011
Last visit: 18 Jul 2025
Posts: 5,937
Own Kudos:
Given Kudos: 463
Status:QA & VA Forum Moderator
Location: India
GPA: 3.5
WE:Business Development (Commercial Banking)
Posts: 5,937
Kudos: 5,327
Kudos
Add Kudos
Bookmarks
Bookmark this Post
avenger
If k and t are integers and k^2 – t^2 is an odd integer, which of the following must be an even integer?

I. k + t + 2
II. k^2 + 2kt + t^2
III. k^2 + t^2

A. None
B. I only
C. II only
D. III only
E. I, II, and III

Plug in some no's and check

k = 7 , t = 4

I. k + t + 2 = 7 + 4 + 2 = 13 ( Odd )
II. k^2 + 2kt + t^2 = 7^2 + 2*7*4 + 4^2 = 121 ( Odd )
III. k^2 + t^2 = 7^2 + 4^2 = 65 ( Odd )

k = 6 , t = 3

I. k + t + 2 = 6 + 3 + 2 = 11 ( Odd )
II. k^2 + 2kt + t^2 = 6^2 + 2*6*3 + 3^2 = 81 ( Odd )
III. k^2 + t^2 = 6^2 + 3^2 = 45 ( Odd )

Check in all the cases the answer will be ODD, hence we will not get even number..

Answer will be (A) None...
User avatar
EgmatQuantExpert
User avatar
e-GMAT Representative
Joined: 04 Jan 2015
Last visit: 02 Apr 2024
Posts: 3,663
Own Kudos:
Given Kudos: 165
Expert
Expert reply
Posts: 3,663
Kudos: 20,162
Kudos
Add Kudos
Bookmarks
Bookmark this Post
avenger
If k and t are integers and k^2 – t^2 is an odd integer, which of the following must be an even integer?

I. k + t + 2
II. k^2 + 2kt + t^2
III. k^2 + t^2

A. None
B. I only
C. II only
D. III only
E. I, II, and III

Here is a methodical approach to solve this question:

Given Info:
\(k^2 – t^2\) is odd.

Inferences:
\(k^2 – t^2\) can be written as \((k – t)*(k + t)\)
Since the product is odd, both \((k – t)\) and \((k + t)\) must be odd.

So, \((k – t)\) is odd ……. (1)
\((k + t)\) is odd …… (2)

The above also implies that exactly one of {\(k\), \(t\)} is odd and the other is even …… (3)


Approach:
We’ll use the above inferences to identify the even-odd nature of each of the given expressions.

Working Out:

(I) \(k + t + 2\)
We already determined that \((k + t)\)is odd.
So, adding an even number (\(2\)) to \((k + t)\) won’t change its even-odd nature.

Think: \(3\)is odd. \(3+2 = 5\) is also odd.

(II) \(k^2 + 2kt + t^2\)
This is simply \((k + t)^2\)

Since \((k + t)\) is odd, its square is also odd.

Think: \(3\) is odd. \(3^2 = 9\) is odd).

(You can also look at this case as: product of two odd integers is always odd).

(III) \(k^2 + t^2\)

\(k^2 + t^2\) will have the same even-odd nature as\(k^2 – t^2\).
So, \(k^2 + t^2\) is also odd.

Think: \((a + b)\) will have the same even-odd nature as\((a – b)\).
Eg: \(5-2 = 3\) (odd) \(5 + 2 = 7\) (odd)

Since none of the given expressions are even, the correct answer is option A.

Hope this helps. :)

Cheers,
Krishna
User avatar
JeffTargetTestPrep
User avatar
Target Test Prep Representative
Joined: 04 Mar 2011
Last visit: 05 Jan 2024
Posts: 2,977
Own Kudos:
Given Kudos: 1,646
Status:Head GMAT Instructor
Affiliations: Target Test Prep
Expert
Expert reply
Posts: 2,977
Kudos: 8,387
Kudos
Add Kudos
Bookmarks
Bookmark this Post
avenger
If k and t are integers and k^2 – t^2 is an odd integer, which of the following must be an even integer?

I. k + t + 2
II. k^2 + 2kt + t^2
III. k^2 + t^2

A. None
B. I only
C. II only
D. III only
E. I, II, and III


We can see that k^2 - t^2 = odd or (k - t)(k + t) = odd. Thus, (k - t) is odd, and (k + t) is odd.

Let’s consider each Roman numeral.

I. Since(k + t) is odd, k + t + 2 = odd + 2 = odd.

II. Since k^2 + 2kt + t^2 = (k + t)^2 = (odd)^2 = odd, k^2 + 2kt + t^2 is odd.

III. Since k^2 – t^2 is odd, k^2 + t^2 is also odd.

Answer: A
User avatar
bumpbot
User avatar
Non-Human User
Joined: 09 Sep 2013
Last visit: 04 Jan 2021
Posts: 38,589
Own Kudos:
Posts: 38,589
Kudos: 1,079
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
Moderators:
Math Expert
105355 posts
Tuck School Moderator
805 posts