Thank you Bunuel for a great question as always
I have recently given my GMAT (Q50) and through these posts want to share some tips, hacks with aspirants
Tip: Try to (algebraically) link back the statement expression to the original question variable, here we have \sqrt{k} in statement (1) and the question talks about k. So a natural way of linking is by squaring the statement expression. This may seem simple enough in this example but you would be surprised on the clearer perspective this can shed in multiple situation.
Coming to the questionStatement(1) 1 < \sqrt{k} < 4 ------> squaring the expression ---------> 1 < k < 16 (if k is 13 or 15, we get \sqrt{k} is not an integer and is k is 9, \sqrt{k} is an integer, hence ambigious information source)
Statement(2)As others have noted, only prime squares have three unique factors (the prime square, the prime and 1). But how did we figure out, it has to be a prime square? What is the mental model to follow in the real test to not throw darts in the dark randomly...
Do a quick 'stress' test. We know that [even numbers, odd numbers, prime numbers, the number 1] are sets of positive number which generally display different characteristics. Take a example from each and see square gets us three unique factors. We are essentially doing a boundary test - taking a representative from different type of numbers and figuring out which is the ideal candidate for the question.
Hence, we go with
option (B)I have complied all my learnings, tips and hacks in a dedicated resource - mastergmatds [dot] com. Please do check it out!