It is currently 22 Nov 2017, 19:31

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

If k is a positive integer, What is the remainder when 2^k is divided

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

1 KUDOS received
Director
Director
User avatar
Status: No dream is too large, no dreamer is too small
Joined: 14 Jul 2010
Posts: 608

Kudos [?]: 1154 [1], given: 39

If k is a positive integer, What is the remainder when 2^k is divided [#permalink]

Show Tags

New post 23 Jan 2012, 21:55
1
This post received
KUDOS
16
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  45% (medium)

Question Stats:

61% (01:28) correct 39% (01:18) wrong based on 755 sessions

HideShow timer Statistics

If k is a positive integer, What is the remainder when 2^k is divided by 10?

(1) k is divisible by 10
(2) k is divisible by 4

My approach is as follows:
[Reveal] Spoiler:
(1) k could be 10, 20, 30...
case i. if k = 10, 2^10, the cyclicity of 2 is 4 (10/4 = reminder 2) so 2^2 is divided by 10 and reminder is 4
case ii. if k = 20, 2^20, the cyclicity of 2 is 4 (20/4 = 5, 5/4 = reminder 1) so 2^1 is divided by 10 and reminder is 2
Insufficient.

(2) k = 4, 8, 12
2^4, the cyclicity of 2 is 4 (4/4 = reminder 0) so 2^0 is divided by 10 and reminder is 1
2^8, the cyclicity of 2 is 4 (8/4 = reminder 0) so 2^0 is divided by 10 and reminder is 1
Sufficient.

Ans. B

Please help whether the above approach can be applied in the problem?
[Reveal] Spoiler: OA

_________________

Collections:-
PSof OG solved by GC members: http://gmatclub.com/forum/collection-ps-with-solution-from-gmatclub-110005.html
DS of OG solved by GC members: http://gmatclub.com/forum/collection-ds-with-solution-from-gmatclub-110004.html
100 GMAT PREP Quantitative collection http://gmatclub.com/forum/gmat-prep-problem-collections-114358.html
Collections of work/rate problems with solutions http://gmatclub.com/forum/collections-of-work-rate-problem-with-solutions-118919.html
Mixture problems in a file with best solutions: http://gmatclub.com/forum/mixture-problems-with-best-and-easy-solutions-all-together-124644.html


Last edited by Bunuel on 20 Oct 2014, 08:35, edited 2 times in total.
Edited the question.

Kudos [?]: 1154 [1], given: 39

Expert Post
2 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 42305

Kudos [?]: 133076 [2], given: 12403

Re: If k is a positive integer, What is the remainder when 2^k is divided [#permalink]

Show Tags

New post 24 Jan 2012, 02:05
2
This post received
KUDOS
Expert's post
6
This post was
BOOKMARKED
Baten80 wrote:
If k is a positive integer, What is the remainder when 2^k is divided by 10?
1) k is dividable by 10
2) k is dividable by 4

My approach is as follows:
(1) k could be 10, 20, 30...
case i. if k = 10, 2^10, the cyclicity of 2 is 4 (10/4 = reminder 2) so 2^2 is divided by 10 and reminder is 4
case ii. if k = 20, 2^20, the cyclicity of 2 is 4 (20/4 = 5, 5/4 = reminder 1) so 2^1 is divided by 10 and reminder is 2
Insufficient.

(2) k = 4, 8, 12
2^4, the cyclicity of 2 is 4 (4/4 = reminder 0) so 2^0 is divided by 10 and reminder is 1
2^8, the cyclicity of 2 is 4 (8/4 = reminder 0) so 2^0 is divided by 10 and reminder is 1
Sufficient.

Ans. B

Please help whether the above approach can be applied in the problem?


General approach is correct, though the red parts are not.

The last digit of 2^k repeats in pattern of 4 (cyclicity is 4):
2^1=2 --> last digit is 2;
2^2=4 --> last digit is 4;
2^3=8 --> last digit is 8;
2^4=16 --> last digit is 6;

2^5=32 --> last digit is 2 again;

Now, when k itself is a multiple of 4 (when there is no remainder upon division k by cyclicity number), then the last digit will be the last digit of 2^4 (4th in pattern), so 6 not 1 (taking 2^0) as you've written.

If k is a positive integer, what is the remainder when 2^k is divided by 10?

Notice that all we need to know to answer the question is the last digit of 2^k.

(1) k is divisible by 10 --> different multiples of 10 yield different remainders upon division by 4 (for example 10/4 yields 2 and 20/4 yields 0), thus we can not get the single numerical value of the last digit of 2^k. Not sufficient.

(2) k is divisible by 4 --> as discussed, when k is a multiple of 4, the last digit of 2^k equals to the last digit of 2^4, which is 6. Integer ending with 6 yields remainder of 6 upon division by 10. Sufficient.

Answer: B.

Hope it's clear.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 133076 [2], given: 12403

Director
Director
User avatar
Status: No dream is too large, no dreamer is too small
Joined: 14 Jul 2010
Posts: 608

Kudos [?]: 1154 [0], given: 39

Re: If k is a positive integer, What is the remainder when 2^k is divided [#permalink]

Show Tags

New post 25 Jan 2012, 09:57

Kudos [?]: 1154 [0], given: 39

Expert Post
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 42305

Kudos [?]: 133076 [0], given: 12403

Re: If k is a positive integer, What is the remainder when 2^k is divided [#permalink]

Show Tags

New post 06 Jun 2013, 06:10
Expert's post
1
This post was
BOOKMARKED
Bumping for review and further discussion*. Get a kudos point for an alternative solution!

*New project from GMAT Club!!! Check HERE

Theory on remainders problems: remainders-144665.html

All DS remainders problems to practice: search.php?search_id=tag&tag_id=198
All PS remainders problems to practice: search.php?search_id=tag&tag_id=199

_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 133076 [0], given: 12403

Current Student
User avatar
Joined: 02 Jul 2012
Posts: 213

Kudos [?]: 295 [0], given: 84

Location: India
Schools: IIMC (A)
GMAT 1: 720 Q50 V38
GPA: 2.6
WE: Information Technology (Consulting)
Reviews Badge
Re: If k is a positive integer, What is the remainder when 2^k is divided [#permalink]

Show Tags

New post 20 Oct 2014, 08:27
Baten80 wrote:
If k is a positive integer, What is the remainder when 2^k is divided by 10?

(1) k is divisible by 10
(2) k is divisible by 4



2^k divided by 10. The cycliicity of 2 when divided by 10 is 4.

1 - k is divisible by 10 - the number can be 10 (2) or 20(0) - Not Sufficient
2 - k is divisible by 4 - Sufficient.

Ans. B
_________________

Give KUDOS if the post helps you... :-D

Kudos [?]: 295 [0], given: 84

1 KUDOS received
Manager
Manager
avatar
B
Joined: 26 May 2013
Posts: 98

Kudos [?]: 32 [1], given: 30

Premium Member
Re: If k is a positive integer, What is the remainder when 2^k is divided [#permalink]

Show Tags

New post 20 Oct 2014, 09:31
1
This post received
KUDOS
Bunuel wrote:
Baten80 wrote:
If k is a positive integer, What is the remainder when 2^k is divided by 10?
1) k is dividable by 10
2) k is dividable by 4

My approach is as follows:
(1) k could be 10, 20, 30...
case i. if k = 10, 2^10, the cyclicity of 2 is 4 (10/4 = reminder 2) so 2^2 is divided by 10 and reminder is 4
case ii. if k = 20, 2^20, the cyclicity of 2 is 4 (20/4 = 5, 5/4 = reminder 1) so 2^1 is divided by 10 and reminder is 2
Insufficient.

(2) k = 4, 8, 12
2^4, the cyclicity of 2 is 4 (4/4 = reminder 0) so 2^0 is divided by 10 and reminder is 1
2^8, the cyclicity of 2 is 4 (8/4 = reminder 0) so 2^0 is divided by 10 and reminder is 1
Sufficient.

Ans. B

Please help whether the above approach can be applied in the problem?


General approach is correct, though the red parts are not.

The last digit of 2^k repeats in pattern of 4 (cyclicity is 4):
2^1=2 --> last digit is 2;
2^2=4 --> last digit is 4;
2^3=8 --> last digit is 8;
2^4=16 --> last digit is 6;

2^5=32 --> last digit is 2 again;

Now, when k itself is a multiple of 4 (when there is no remainder upon division k by cyclicity number), then the last digit will be the last digit of 2^4 (4th in pattern), so 6 not 1 (taking 2^0) as you've written.

If k is a positive integer, what is the remainder when 2^k is divided by 10?

Notice that all we need to know to answer the question is the last digit of 2^k.

(1) k is divisible by 10 --> different multiples of 10 yield different remainders upon division by 4 (for example 10/4 yields 2 and 20/4 yields 0), thus we can not get the single numerical value of the last digit of 2^k. Not sufficient.

(2) k is divisible by 4 --> as discussed, when k is a multiple of 4, the last digit of 2^k equals to the last digit of 2^4, which is 6. Integer ending with 6 yields remainder of 6 upon division by 10. Sufficient.

Answer: B.

Hope it's clear.


To add some clarity for myself and viewers:

Since the last digit in 2^k repeats in cycles of 4, you will ALWAYS know the last digit (and remainder) if k is a multiple of 4.

Therefore 2^4, 2^8,2^12. 2_16, etc.... will always have a last digit of 6.

If k is a multiple of 10, you know if k = 10, the last digit will be 4, and if k=20 the last digit will be 6, k=30 the last digit will be 4, etc... in repeating pattern. However without knowing the exact value of k you won't know the remainder.

Kudos [?]: 32 [1], given: 30

Manager
Manager
User avatar
B
Joined: 22 Jan 2014
Posts: 141

Kudos [?]: 77 [0], given: 145

WE: Project Management (Computer Hardware)
Re: If k is a positive integer, What is the remainder when 2^k is divided [#permalink]

Show Tags

New post 02 Nov 2014, 02:22
Baten80 wrote:
If k is a positive integer, What is the remainder when 2^k is divided by 10?

(1) k is divisible by 10
(2) k is divisible by 4

My approach is as follows:
[Reveal] Spoiler:
(1) k could be 10, 20, 30...
case i. if k = 10, 2^10, the cyclicity of 2 is 4 (10/4 = reminder 2) so 2^2 is divided by 10 and reminder is 4
case ii. if k = 20, 2^20, the cyclicity of 2 is 4 (20/4 = 5, 5/4 = reminder 1) so 2^1 is divided by 10 and reminder is 2
Insufficient.

(2) k = 4, 8, 12
2^4, the cyclicity of 2 is 4 (4/4 = reminder 0) so 2^0 is divided by 10 and reminder is 1
2^8, the cyclicity of 2 is 4 (8/4 = reminder 0) so 2^0 is divided by 10 and reminder is 1
Sufficient.

Ans. B

Please help whether the above approach can be applied in the problem?


remainder by 10 means units digit.

1) k is div by 10
k = 10 ; 2^10 ends in 4
k = 20 ; 2^20 ends in 6
insufficient.

2) k is div by 4
2^(4k) always ends in 6
sufficient.

B.
_________________

Illegitimi non carborundum.

Kudos [?]: 77 [0], given: 145

Retired Moderator
avatar
P
Joined: 12 Aug 2015
Posts: 2213

Kudos [?]: 878 [0], given: 602

GMAT ToolKit User Premium Member
Re: If k is a positive integer, What is the remainder when 2^k is divided [#permalink]

Show Tags

New post 22 Mar 2016, 02:47
here the trick is to realise that the cylicity of 2 => Four
hence statement 2 is sufficient and the remainder will be always => 6
_________________

Give me a hell yeah ...!!!!!

Kudos [?]: 878 [0], given: 602

Non-Human User
User avatar
Joined: 09 Sep 2013
Posts: 15546

Kudos [?]: 283 [0], given: 0

Premium Member
Re: If k is a positive integer, What is the remainder when 2^k is divided [#permalink]

Show Tags

New post 25 Apr 2017, 08:32
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

GMAT Books | GMAT Club Tests | Best Prices on GMAT Courses | GMAT Mobile App | Math Resources | Verbal Resources

Kudos [?]: 283 [0], given: 0

Re: If k is a positive integer, What is the remainder when 2^k is divided   [#permalink] 25 Apr 2017, 08:32
Display posts from previous: Sort by

If k is a positive integer, What is the remainder when 2^k is divided

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.