Bunuel
If the two roots \(r_1\) and \(r_2\) of the quadratic equation \(5x^2 - px + 1 = 0\) are such that \(|r_1 - r_2| = 1\), what is the value of \(p\)?
A. \(-3\sqrt 5\)
B. \(-2\sqrt 3\)
C. \(\sqrt 5\)
D. \(2\sqrt 3\)
E. \(3\sqrt 5\)
If the quadratic equation is \(ax^2+bx+c=0\),
Sum of roots = \(\frac{-b}{a}\)
Product of roots = \(\frac{c}{a}\)
\(5x^2 -px + 1 = 0\) is the quadratic equation here.
Sum of roots = \(r_1+r_2=\frac{-(-p)}{5}=\frac{p}{5}\).....(i)
Product of roots = \(r_1r_2=\frac{1}{5}\)....(ii)
\(|r_1 - r_2| = 1\)
Square both sides.......
\((|r_1 - r_2|)^2 = 1^2\)..........
\(r_1^2+r_2^2-2r_1r_2=1\)............
\(r_1^2+r_2^2+2r_1r_2-4r_1r_2=1\).........
\((r_1+r_2)^2-4r_1r_2=1\)
Substitute the values of \(r_1+r_2 \ \ and \ \ r_1r_2\) from i and ii
\((r_1+r_2)^2-4r_1r_2=1\)............
\((\frac{p}{5})^2-4*\frac{1}{5}=1\)...............
\(\frac{p^2}{25}\)\(=1+\frac{4}{5}=\frac{9}{5}\)
\(p^2=25*\frac{9}{5}=5*9......p=3\sqrt{5}\)
E