If \(x\) is a positive number and \(\sqrt{\frac{3}{2}+{\sqrt{\frac{3}{2}+\sqrt{\frac{3}{2}+\sqrt{\frac{3}{2}+...}}}}}=x\), where the given expression extends to an infinite number of roots, then what is the value of \(x\)?
Two ways..
If you are aware of the type of these questions..
\(\sqrt{\frac{3}{2}+{\sqrt{\frac{3}{2}+\sqrt{\frac{3}{2}+\sqrt{\frac{3}{2}+...}}}}}=x\)..
We can further write this as
\(\sqrt{\frac{3}{2}+x}=x\)
Square both sides...\(\frac{3}{2}+{x}=x^2......x^2-x-\frac{3}{2}=0\)
Apply the formula for roots, \(= \frac{-b ±\sqrt{b^2- 4*a*c}}{2a}=\frac{1^2 ± \sqrt{(-1)^2+4*\frac{3}{2}}}{2} = \frac{1 ± \sqrt{1+6}}{2}\)
But x is surely positive, so \(x= \frac{1 + \sqrt{7}}{2} \)
Next, if you do not know anything but are looking for a start...
Now 3/2=1.5
what is \(\sqrt{3/2}=\sqrt{1.5}>1\)
\(\sqrt{1.5+{\sqrt{1.5}}<x........x>\sqrt{1.5+1}=\sqrt{2.5}\), so x is surely >1.5
Look at the choices that gives you these values..
A. \(\frac{1-\sqrt{7}}{2}\)... a NEGATIVE value...N)
B. \(\frac{1}{2}\)=0.5...NO
C. \(\frac{\sqrt{7}-1}{2}\)....\(\sqrt{7}\) is between 2 and 3. Even if it is 3, \(\frac{3-1}{2}=1\)..NO
D. \(\frac{\sqrt{7}}{2}\)....Surely \(<\frac{3}{2}...<1.5\)....NO
E. \(\frac{1+\sqrt{7}}{2}\)....Surely \(<\frac{1+3}{2}...<2\)......Possible
So, Only E is possible