Last visit was: 20 Nov 2025, 02:43 It is currently 20 Nov 2025, 02:43
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
rohitgoel15
Joined: 07 Nov 2009
Last visit: 29 Jan 2018
Posts: 184
Own Kudos:
3,158
 [124]
Given Kudos: 20
Schools: HEC '15 (A)
Posts: 184
Kudos: 3,158
 [124]
9
Kudos
Add Kudos
114
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 20 Nov 2025
Posts: 105,408
Own Kudos:
Given Kudos: 99,987
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,408
Kudos: 778,453
 [46]
15
Kudos
Add Kudos
31
Bookmarks
Bookmark this Post
User avatar
Apex231
Joined: 03 Oct 2009
Last visit: 14 Jun 2014
Posts: 37
Own Kudos:
694
 [15]
Given Kudos: 8
Schools: ISB '14
Posts: 37
Kudos: 694
 [15]
13
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
User avatar
chetan2u
User avatar
GMAT Expert
Joined: 02 Aug 2009
Last visit: 15 Nov 2025
Posts: 11,238
Own Kudos:
43,707
 [8]
Given Kudos: 335
Status:Math and DI Expert
Location: India
Concentration: Human Resources, General Management
GMAT Focus 1: 735 Q90 V89 DI81
Products:
Expert
Expert reply
GMAT Focus 1: 735 Q90 V89 DI81
Posts: 11,238
Kudos: 43,707
 [8]
6
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
bimalr9
If x is an integer, what is the value of x?

1. |x-|x^2|| = 2
2. |x^2 -|x|| =2

Looking individually at the two statements, both are clearly not sufficient as each is a quadratic equation and will have two roots.....

Combined..
\(|x-|x^2||=|x^2-|x||\)...
this shows that x is +ive, otherwise \(|x-|x^2||>|x^2-|x||\)...
Now lets solve any equation
\(|x^2 -|x|| =2... ..............\\
x^2-x=2..\)
or \(x^2-x-2 =0...................x^2-2x+x-2=0...................(x-2)(x+1) = 0...................... x = 2 ...or... -1\), BUT x is +ive so x=2
Suff
C
General Discussion
User avatar
amit2k9
Joined: 08 May 2009
Last visit: 18 Jun 2017
Posts: 535
Own Kudos:
636
 [3]
Given Kudos: 10
Status:There is always something new !!
Affiliations: PMI,QAI Global,eXampleCG
Posts: 535
Kudos: 636
 [3]
3
Kudos
Add Kudos
Bookmarks
Bookmark this Post
a.
squaring both sides we get
x^2 + x^4 - 2x* x^2 = 4
meaning, x^2 (x-1)^2 = 4
thus x = 2 | -1 not sufficient.

b same process and we get x = 2| -2
not sufficient.

a+b gives x = 2.

thus C it is.
User avatar
saikarthikreddy
Joined: 19 Apr 2011
Last visit: 14 Feb 2022
Posts: 128
Own Kudos:
1,037
 [9]
Given Kudos: 53
Concentration: Finance,Entrepreneurship,General Management
GMAT 1: 720 Q49 V38
GRE 1: Q167 V167
Posts: 128
Kudos: 1,037
 [9]
7
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
If x is an integer, what is the value of x?
1) |x - |x2|| = 2
2) |x2 - |x|| = 2

Hi Rohit,these type of questions are extremely easy.they just seem to be intimidating but they are not .
You just need to know one concept
[x]= x if x is positive
[x]=-x if x is negative.

Now take 1) |x - |x2|| = 2

|x2| is always positive. |x - |x2|| is negative since x^2>x

x^2-x=2.The value of X can be obtained as 2,-1.
Statement alone is not sufficient

From 2) Similarly we get 2 equations x^2-x=2 and x^2+x=2 depeding upon whether X is positive or negative respectively which we dont know .
Statement 2 alone is not sufficient .
User avatar
rohitgoel15
Joined: 07 Nov 2009
Last visit: 29 Jan 2018
Posts: 184
Own Kudos:
Given Kudos: 20
Schools: HEC '15 (A)
Posts: 184
Kudos: 3,158
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
rohitgoel15
If x is an integer, what is the value of x?
1) |x - |x2|| = 2
2) |x2 - |x|| = 2

I saw the solution and I think i cant even get close. On the test, I would prefer not to solve this question. But is there a short way to make an educated guess. :shock:

Answer is not E as given in above posts, it's C. Also note that 1 and -1 does not satisfy statement (2).

If x is an integer, what is the value of x?

(1) |x - |x^2|| = 2. First of all: \(|x^2|=x^2\) (as \(x^2\) is a non-negative value). Square both sides: \((x-x^2)^2=4\) --> factor out \(x\): \(x^2*(1-x)^2=4\) --> as \(x\) is an integer then \(x=2\) or \(x=-1\) (by trial and error: the product of two perfect square is 4: 1*4=4 or 4*1=4). Not sufficient.

(2) |x2 - |x|| = 2 --> square both sides: \((x^2-|x|)^2=4\) --> factor out \(|x|\): \(x^2*(|x|-1)^2=4\) --> as \(x\) is an integer then \(x=2\) or \(x=-2\). Not sufficient.

(1)+(2) Intersection of the values from (1) and (2) is \(x=2\). Sufficient.

Answer: C.

Hope it's clear.

Thanks for the reply Bunuel. I didnt understand the factorization part in your post. It would be great if you can simplify the parts.
But is there a mistake in the below post?

amit2k9
a.
squaring both sides we get
x^2 + x^4 - 2x* x^2 = 4
meaning, x^2 (x-1)^2 = 4
thus x = 2 | -1 not sufficient.

b same process and we get x = 2| -2
not sufficient.

a+b gives x = 2.

thus C it is.

Now take 1) |x - |x2|| = 2

|x2| is always positive. |x - |x2|| is negative since x^2>x

x^2-x=2.The value of X can be obtained as 2,-1.
Statement alone is not sufficient

From 2) Similarly we get 2 equations x^2-x=2 and x^2+x=2 depeding upon whether X is positive or negative respectively which we dont know .
Statement 2 alone is not sufficient .
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 20 Nov 2025
Posts: 105,408
Own Kudos:
778,453
 [2]
Given Kudos: 99,987
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,408
Kudos: 778,453
 [2]
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
rohitgoel15
Bunuel
rohitgoel15
If x is an integer, what is the value of x?
1) |x - |x2|| = 2
2) |x2 - |x|| = 2

I saw the solution and I think i cant even get close. On the test, I would prefer not to solve this question. But is there a short way to make an educated guess. :shock:

Answer is not E as given in above posts, it's C. Also note that 1 and -1 does not satisfy statement (2).

If x is an integer, what is the value of x?

(1) |x - |x^2|| = 2. First of all: \(|x^2|=x^2\) (as \(x^2\) is a non-negative value). Square both sides: \((x-x^2)^2=4\) --> factor out \(x\): \(x^2*(1-x)^2=4\) --> as \(x\) is an integer then \(x=2\) or \(x=-1\) (by trial and error: the product of two perfect square is 4: 1*4=4 or 4*1=4). Not sufficient.

(2) |x2 - |x|| = 2 --> square both sides: \((x^2-|x|)^2=4\) --> factor out \(|x|\): \(x^2*(|x|-1)^2=4\) --> as \(x\) is an integer then \(x=2\) or \(x=-2\). Not sufficient.

(1)+(2) Intersection of the values from (1) and (2) is \(x=2\). Sufficient.

Answer: C.

Hope it's clear.

Thanks for the reply Bunuel. I didnt understand the factorization part in your post. It would be great if you can simplify the parts.
But is there a mistake in the below post?

amit2k9
a.
squaring both sides we get
x^2 + x^4 - 2x* x^2 = 4
meaning, x^2 (x-1)^2 = 4
thus x = 2 | -1 not sufficient.

b same process and we get x = 2| -2
not sufficient.

a+b gives x = 2.

thus C it is.

Now take 1) |x - |x2|| = 2

|x2| is always positive. |x - |x2|| is negative since x^2>x

x^2-x=2.The value of X can be obtained as 2,-1.
Statement alone is not sufficient

From 2) Similarly we get 2 equations x^2-x=2 and x^2+x=2 depeding upon whether X is positive or negative respectively which we dont know .
Statement 2 alone is not sufficient .

First question: factoring out.
\((x-x^2)^2=4\) --> \((x*(1-x))^2=4\) --> \(x^2*(1-x)^2=4\);
\((x^2-|x|)^2=4\) --> now, we want to factor out \(|x|\) (notice x^2=|x|*|x| and we are factoring out one |x|) --> \((|x|*(|x|-1))^2=4\) --> \(x^2*(|x|-1)^2=4\).

Second question: other solutions.
amit2k9 corrected his solution after my post so the answer there is correct.
You also quote there saikarthikreddy's solution which I don't really understand as there are some parts in reasoning missing. Also it's not clear what is saikarthikreddy's answer. E? C?

Please ask if anything remains unclear in my post.
User avatar
skamal7
Joined: 02 Sep 2012
Last visit: 02 Dec 2013
Posts: 158
Own Kudos:
Given Kudos: 99
Location: United States
Concentration: Entrepreneurship, Finance
GMAT Date: 07-25-2013
GPA: 3.83
WE:Architecture (Computer Hardware)
Posts: 158
Kudos: 611
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunnel if you dont mind can you explain the factorizing part bit elaborately...Am totally not able to understand the second statement factorization
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 20 Nov 2025
Posts: 105,408
Own Kudos:
778,453
 [1]
Given Kudos: 99,987
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,408
Kudos: 778,453
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
skamal7
Bunnel if you dont mind can you explain the factorizing part bit elaborately...Am totally not able to understand the second statement factorization

(2) |x^2 - |x|| = 2 --> square both sides: \((x^2-|x|)^2=4\). Since \(x^2=|x|^2\), then we have that \((|x|^2-|x|)^2=4\). Factor out \(|x|\): \(|x|^2*(|x|-1)^2=4\) --> \(x^2*(|x|-1)^2=4\).
avatar
jakelong1
Joined: 05 Aug 2012
Last visit: 08 Aug 2018
Posts: 10
Own Kudos:
Given Kudos: 2
Posts: 10
Kudos: 6
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
skamal7
Bunnel if you dont mind can you explain the factorizing part bit elaborately...Am totally not able to understand the second statement factorization

(2) |x^2 - |x|| = 2 --> square both sides: \((x^2-|x|)^2=4\). Since \(x^2=|x|^2\), then we have that \((|x|^2-|x|)^2=4\). Factor out \(|x|\): \(|x|^2*(|x|-1)^2=4\) --> \(x^2*(|x|-1)^2=4\).


Hi Bunuel,

I understood what you did, what I didnt understand is why you squared the equation before simplifying it. What I knew about Mods, my line of reasoning is similar to what Apex231 did. I was just wondering about the approach that you took, squaring and then moving forward, clearly I am missing something here.. can you please explain.
User avatar
PrashantPonde
Joined: 27 Jun 2012
Last visit: 29 Jan 2025
Posts: 321
Own Kudos:
2,740
 [1]
Given Kudos: 185
Concentration: Strategy, Finance
Posts: 321
Kudos: 2,740
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
1) \(|x - |x^2|| = 2\)
Putting x as 2 -> \(|2 - 4| = 2\)
Putting x as -1 -> \(|-1 - 1| = 2\)
x has two values (2, -1)
Hence NOT SUFFICIENT.

2) \(|x^2 - |x|| = 2\)
Putting x as 2 -> \(|4 - 2| = 2\)
Putting x as -2 -> \(|4 - 3| = 2\)
x has two values (2, -2)
Hence NOT SUFFICIENT.

Combining 1 & 2 gives \(x =2\).
Hence (C) is the answer.

PS: how did we arrive into 2, -2, -1 roots?
Either pick numbers that are + or - integers or use algebraic approach below:

For choice 1 consider positive absolute value:
\(x - x^2 = 2\)
\(x^2 - x + 2 = 0\)
- no possible roots for this equation.

For choice 1 consider negative value:
\(-(x - x^2) = 2\)
\(x^2 - x -2 = 0\)
\(x = 2\) and \(x = -1\)
User avatar
Marcab
Joined: 03 Feb 2011
Last visit: 22 Jan 2021
Posts: 850
Own Kudos:
Given Kudos: 221
Status:Retaking after 7 years
Location: United States (NY)
Concentration: Finance, Economics
GMAT 1: 720 Q49 V39
GPA: 3.75
GMAT 1: 720 Q49 V39
Posts: 850
Kudos: 4,853
Kudos
Add Kudos
Bookmarks
Bookmark this Post
sambam
If x is an integer, what is the value of x?

1) |x - |x^2|| = 2
2) |x^2 - |x|| = 2

A tough one indeed.
This question is not at all a sub-700 level question. IMO it is atleast 730 level question.

Statement 1 yields 2 cases, among which one provides non-real numbers. The two real number values of x are 2,-1.
Insufficient.

Statement 2 yields 4 cases as well, among which 2 provide non real numbers. The 2 real number solutions of x are (-2 and 1) and (2 and -1) respectively. One doesn't satisfies the statement 2 and thus is not considered.
3 values, hence insufficient.

The common value in statement 1 solution and statement 2 solution is -2.
Hence x=2 .
+1C
User avatar
Marcab
Joined: 03 Feb 2011
Last visit: 22 Jan 2021
Posts: 850
Own Kudos:
Given Kudos: 221
Status:Retaking after 7 years
Location: United States (NY)
Concentration: Finance, Economics
GMAT 1: 720 Q49 V39
GPA: 3.75
GMAT 1: 720 Q49 V39
Posts: 850
Kudos: 4,853
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Please do proper search before posting.
This question has already been discussed at if-x-is-an-integer-what-is-the-value-of-x-126958.html.
Here are the rules for posting in the forum.
rules-for-posting-please-read-this-before-posting-133935.html.
Topic locked.
User avatar
WholeLottaLove
Joined: 13 May 2013
Last visit: 13 Jan 2014
Posts: 305
Own Kudos:
627
 [1]
Given Kudos: 134
Posts: 305
Kudos: 627
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
If x is an integer, what is the value of x?

(1) |x - |x^2|| = 2

|x - |x^2|| = 2
(x^2 is ALWAYS greater than or equal to zero so we can drop the absolute value sign)
|x-x^2| = 2
Two cases, positive and negative
Positive: x>1
x-x^2 = 2
-x^2 + x - 2 = 0
x^2 - x + 2 = 0
(can this be factored out?)

Negative: x<1
-x + x^2 = 2
x^2 - x -2 = 0
(x-2) * (x+1) = 0
x=2, x=-1

Here, we have two possible values for x.
INSUFFICIENT

(2) |x^2 - |x|| = 2

|x^2 - |x|| = 2
Two cases for x, positive and negative.
x>= 0
x^2 - x = 2
x^2 - x - 2 = 0
(x-2) * (x+1) = 0
x = 2, x = -1
two values, one less than zero one greater than zero.
INSUFFICIENT

x<0
x^2 - -x =2
x^2 + x - 2 = 0
(x+2) * (x-1) = 0
x=-2, x=1
two values for x but one is greater than zero and one is less than zero.
INSUFFICIENT

See, I would say E in this case. Where did I go wrong?

Solving it another way...

(1) |x - |x^2|| = 2
A stated above x^2 is greater than or equal to 0 so we can drop the absolute value signs.

(x-x^2)^2 = 4
x=2, x=-1

We get two values.
INSUFFICIENT

(2) |x^2 - |x|| = 2
As with #1 we can get rid of the outer absolute value signs by squaring.
|x^2 - |x|| = 2
(x^2 - |x|) = 2
(x^2 - |x|)^2 = 4
(remember, x^2 = |x|^2)
(|x|^2 - |x|)^2 = 4
|x|(|x| - 1)^2 = 4
x= 2, x=-2

we get two values
INSUFFICIENT

1+2 we get an intersection of x=-2
SUFFICIENT

Here is my question. There are many times where I have correctly used the first method (taking the positive and negative cases to solve) to solve problems and this seems like it could be one of those problems. Why is it that with this problem, that method appears to be incorrect?

Thanks!
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 20 Nov 2025
Posts: 105,408
Own Kudos:
Given Kudos: 99,987
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,408
Kudos: 778,453
Kudos
Add Kudos
Bookmarks
Bookmark this Post
WholeLottaLove
If x is an integer, what is the value of x?

(1) |x - |x^2|| = 2

|x - |x^2|| = 2
(x^2 is ALWAYS greater than or equal to zero so we can drop the absolute value sign)
|x-x^2| = 2
Two cases, positive and negative
Positive: x>1
x-x^2 = 2
-x^2 + x - 2 = 0
x^2 - x + 2 = 0
(can this be factored out?)

Negative: x<1
-x + x^2 = 2
x^2 - x -2 = 0
(x-2) * (x+1) = 0
x=2, x=-1

Here, we have two possible values for x.
INSUFFICIENT

(2) |x^2 - |x|| = 2

|x^2 - |x|| = 2
Two cases for x, positive and negative.
x>= 0
x^2 - x = 2
x^2 - x - 2 = 0
(x-2) * (x+1) = 0
x = 2, x = -1
two values, one less than zero one greater than zero.
INSUFFICIENT

x<0
x^2 - -x =2
x^2 + x - 2 = 0
(x+2) * (x-1) = 0
x=-2, x=1
two values for x but one is greater than zero and one is less than zero.
INSUFFICIENT

See, I would say E in this case. Where did I go wrong?

Thanks!

This is not the best way to solve this question.

Also, notice that:
x-x^2<0 for x<0 and x>1 and
x-x^2>0 for 0<x<1.
User avatar
WholeLottaLove
Joined: 13 May 2013
Last visit: 13 Jan 2014
Posts: 305
Own Kudos:
627
 [3]
Given Kudos: 134
Posts: 305
Kudos: 627
 [3]
3
Kudos
Add Kudos
Bookmarks
Bookmark this Post
If x is an integer, what is the value of x?

(1) |x - |x^2|| = 2

|x - |x^2|| = 2
(we can drop the inner absolute value signs because x^2 is always >= 0)
|x - x^2| = 2

Normally, there would be a positive and a negative case
Positive: 0<x<1
Negative: x>1, x<0

However, because x must be an integer, there is no positive case to test because only a fraction between 0 and 1 will provide a positive case.

Negative: x>1, x<0
|x - x^2| = 2
-(x-x^2) = 2
-x + x^2 = 2
x^2 - x - 2 = 0
(x - 2)(x + 1) = 0
x=2, x=-1
Both values of x satisfy their given ranges (2>1 and -1<-0) So we are left with two possible correct answers
INSUFFICIENT

(2) |x^2 - |x|| = 2

|x^2 - |x|| = 2
Two cases:

X is an integer so it must be greater than or equal to 1 or less than or equal to -1. This means that |x^2 - |x|| = 2 will always be positive but |x| could be positive or negative.

|x^2 - |x|| = 2
x>0
(x^2 - x) = 2
x^2 - x - 2 = 0
(x - 2)(x + 1) = 0
x=2, x=-1
x=2 is Valid
OR
x<0
(x^2 - (-x)) = 2
x^2 + x - 2 = 0
(x + 2) (x - 1) = 0
x=-2, x=1
x=-2 is Valid

So, as with #1, we have two valid solutions for x, 2, -2

1+2) The valid solutions for #1 are 2 and -1, the valid solutions for #2 are 2 and -2. The only common number between them is 2.
SUFFICIENT


Could someone show me how to factor out both sides like Bunuel did in his explanation?

Thanks!
User avatar
fra
Joined: 29 Oct 2013
Last visit: 20 Aug 2019
Posts: 16
Own Kudos:
Given Kudos: 12
Posts: 16
Kudos: 56
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hey Bunuel,

I drew up the same solution but I chose E because after combining (1) and (2) I saw it as x=2 or x=-2 or x=1. Can you explain why this is wrong?
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 20 Nov 2025
Posts: 105,408
Own Kudos:
Given Kudos: 99,987
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,408
Kudos: 778,453
Kudos
Add Kudos
Bookmarks
Bookmark this Post
fra
Hey Bunuel,

I drew up the same solution but I chose E because after combining (1) and (2) I saw it as x=2 or x=-2 or x=1. Can you explain why this is wrong?

x = -1 does not satisfy either of the statements.
x = -2 does not satisfy the first statement.
User avatar
ND9129
Joined: 10 Sep 2014
Last visit: 21 Jun 2023
Posts: 7
Own Kudos:
Given Kudos: 96
GMAT 1: 750 Q49 V44
GMAT 1: 750 Q49 V44
Posts: 7
Kudos: 2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hey bunuel,
I got x=-1,2 from the first statement.
But in the second statement, i took positive and negative possibilities and came up with 4 equations.
the 4 equations are
1.(x^2)-x=2
2.(x^2)+x=2
3. -(x^2)+x=2
4. -(x^2)-x=2
Out of these four equations, according to me, only the 1st and the second have real solutions.
So from the 1st equation above i got x=-1,2(Same as the result from our First Statement )
and from the second equation i got x=1,-2.
But everywhere people have written that they got x=-2,2 from the second statement. Can you please explain it to me as to what the issue is.
 1   2   
Moderators:
Math Expert
105408 posts
496 posts