Last visit was: 20 Nov 2025, 07:23 It is currently 20 Nov 2025, 07:23
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 20 Nov 2025
Posts: 105,420
Own Kudos:
778,520
 [2]
Given Kudos: 99,987
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,420
Kudos: 778,520
 [2]
1
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
User avatar
email2vm
Joined: 26 Apr 2013
Last visit: 15 Jun 2019
Posts: 101
Own Kudos:
Given Kudos: 39
Status:folding sleeves up
Location: India
Concentration: Finance, Strategy
GMAT 1: 530 Q39 V23
GMAT 2: 560 Q42 V26
GPA: 3.5
WE:Consulting (Computer Hardware)
GMAT 2: 560 Q42 V26
Posts: 101
Kudos: 795
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 20 Nov 2025
Posts: 105,420
Own Kudos:
778,520
 [1]
Given Kudos: 99,987
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,420
Kudos: 778,520
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
ENGRTOMBA2018
Joined: 20 Mar 2014
Last visit: 01 Dec 2021
Posts: 2,325
Own Kudos:
3,837
 [2]
Given Kudos: 816
Concentration: Finance, Strategy
GMAT 1: 750 Q49 V44
GPA: 3.7
WE:Engineering (Aerospace and Defense)
Products:
GMAT 1: 750 Q49 V44
Posts: 2,325
Kudos: 3,837
 [2]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
NikhilDev
Hey bunuel,
I got x=-1,2 from the first statement.
But in the second statement, i took positive and negative possibilities and came up with 4 equations.
the 4 equations are
1.(x^2)-x=2
2.(x^2)+x=2
3. -(x^2)+x=2
4. -(x^2)-x=2
Out of these four equations, according to me, only the 1st and the second have real solutions.
So from the 1st equation above i got x=-1,2(Same as the result from our First Statement )
and from the second equation i got x=1,-2.
But everywhere people have written that they got x=-2,2 from the second statement. Can you please explain it to me as to what the issue is.

You are making a mistake while interpreting different scenarios after you open up the absolute sign.

Per statement 2, |x^2-|x||=2

Consider 2 cases,

Case 1: when \(x \geq 0\), \(|x| =x\) --->\(|x^2-|x||=2\) becomes \(|x^2-x|=2\) ---> \(x^2-x=\pm 2\) , giving you 2 quadratic equations

\(x^2-x-2=0\) and \(x^2-x+2=0\) (no real solutions, eliminate). From \(x^2-x-2=0\) , you get x=2 and x=-1 but x=-1 is NOT allowed as you are assuming that for this case, \(x \geq 0\).

Thus x=2 is the only possible solution from this scenario.

Case 2: when \(x<0\)---> \(|x| = -x\) ---> \(|x^2-|x||=2\) becomes \(|x^2+x|=2\)---> \(x^2+x=\pm 2\) , giving you 2 quadratic equations again,
\(x^2+x-2=0\) and\(x^2+x+2=0\) (no real solutions, eliminate). From \(x^2+x-2=0\), you get x=-2 and x=1 but x=1 is NOT allowed as you are assuming that for this case, \(x < 0\).

Thus x=-2 is the only possible solution from this scenario.

Finally, when you combine both the scenarios, you see that the allowed values are \(x=\pm 2\). Thus this statement is NOT sufficient to answer the question asked.

Hope this help. You have to be very careful about your assumptions in absolute value questions.
User avatar
GMATinsight
User avatar
Major Poster
Joined: 08 Jul 2010
Last visit: 20 Nov 2025
Posts: 6,842
Own Kudos:
16,354
 [1]
Given Kudos: 128
Status:GMAT/GRE Tutor l Admission Consultant l On-Demand Course creator
Location: India
GMAT: QUANT+DI EXPERT
Schools: IIM (A) ISB '24
GMAT 1: 750 Q51 V41
WE:Education (Education)
Products:
Expert
Expert reply
Schools: IIM (A) ISB '24
GMAT 1: 750 Q51 V41
Posts: 6,842
Kudos: 16,354
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
rohitgoel15
If x is an integer, what is the value of x?

(1) |x - |x^2|| = 2
(2) |x^2 - |x|| = 2

Question : x=?

Statement 1: |x - |x^2|| = 2
The solutions of the given equation are
x=2 and -1
NOT SUFFICIENT

Statement 2: |x^2 - |x|| = 2
The solutions of the given equation are
x=2 and -2
NOT SUFFICIENT

Combining the two statements
x = 2
SUFFICIENT

Answer: Option C
User avatar
MathRevolution
User avatar
Math Revolution GMAT Instructor
Joined: 16 Aug 2015
Last visit: 27 Sep 2022
Posts: 10,070
Own Kudos:
Given Kudos: 4
GMAT 1: 760 Q51 V42
GPA: 3.82
Expert
Expert reply
GMAT 1: 760 Q51 V42
Posts: 10,070
Kudos: 19,395
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Forget conventional ways of solving math questions. In DS, Variable approach is the easiest and quickest way to find the answer without actually solving the problem. Remember equal number of variables and independent equations ensures a solution.

If x is an integer, what is the value of x?

(1) |x - |x^2|| = 2
(2) |x^2 - |x|| = 2


In the original condition, there is 1 variable(x), which should match with the number of equations. So you need 1 equation. For 1) 1 equation, for 2) 1 equation, which is likely to make D the answer.
For 1), it becomes |x^2|=x^2 -> x-x^2=-2, +2. In x-x^2=-2, +2, x^2-x-2=0, (x-2)(x+1)=0 -> x=2, -1, which is not unique and not sufficient.
For 2), in x^2-|x|=-2, 2, x^2=|x|^2 is derived. |x|^2-|x|=2, |x|^2-|x|-2=0, (|x|-2)(|x|+1)=0 -> x|=2, -1. -1 is impossible. |x|=2 -> x=-2,2, which is not unique and not sufficient.
When 1) & 2), x=2 is unique, which is sufficient.
Therefore, the answer is C.


-> For cases where we need 1 more equation, such as original conditions with “1 variable”, or “2 variables and 1 equation”, or “3 variables and 2 equations”, we have 1 equation each in both 1) and 2). Therefore, there is 59 % chance that D is the answer, while A or B has 38% chance and C or E has 3% chance. Since D is most likely to be the answer using 1) and 2) separately according to DS definition. Obviously there may be cases where the answer is A, B, C or E.
User avatar
etienneg
Joined: 06 May 2016
Last visit: 12 Jun 2016
Posts: 11
Own Kudos:
Given Kudos: 5
WE:Education (Education)
Posts: 11
Kudos: 15
Kudos
Add Kudos
Bookmarks
Bookmark this Post
A slightly different approach:

Statement 1
X is -1 or 2
Insufficient

Statement 2
X is 2 or -2
Insufficient

Combined
2 is the only common root for both equations = hence X must be 2.
Answer = C
User avatar
vanam52923
Joined: 17 Jul 2017
Last visit: 12 Jun 2025
Posts: 202
Own Kudos:
Given Kudos: 228
Posts: 202
Kudos: 102
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
rohitgoel15
If x is an integer, what is the value of x?
1) |x - |x2|| = 2
2) |x2 - |x|| = 2

I saw the solution and I think i cant even get close. On the test, I would prefer not to solve this question. But is there a short way to make an educated guess. :shock:

Answer is not E as given in above posts, it's C. Also note that 1 and -1 do not satisfy statement (2).

If x is an integer, what is the value of x?

(1) |x - |x^2|| = 2. First of all: \(|x^2|=x^2\) (as \(x^2\) is a non-negative value). Square both sides: \((x-x^2)^2=4\) --> factor out \(x\): \(x^2*(1-x)^2=4\) --> as \(x\) is an integer then \(x=2\) or \(x=-1\) (by trial and error: the product of two perfect square is 4: 1*4=4 or 4*1=4). Not sufficient.

(2) |x^2 - |x|| = 2 --> square both sides: \((x^2-|x|)^2=4\) --> factor out \(|x|\): \(x^2*(|x|-1)^2=4\) --> as \(x\) is an integer then \(x=2\) or \(x=-2\). Not sufficient.

(1)+(2) Intersection of the values from (1) and (2) is \(x=2\). Sufficient.

Answer: C.

Hope it's clear.

Do square and mod cancel each other?
User avatar
ramalcha
Joined: 18 Mar 2018
Last visit: 19 May 2023
Posts: 17
Own Kudos:
Given Kudos: 45
Location: Malaysia
GMAT 1: 650 Q48 V31
GMAT 1: 650 Q48 V31
Posts: 17
Kudos: 6
Kudos
Add Kudos
Bookmarks
Bookmark this Post
In this circumstance, especially in the test, doing pure algebra may not be your first instinct. By looking at the question, we know that x is an integer and from the statements, it is clear we are dealing with small numbers so draw a table.

Attachment:
4.PNG
4.PNG [ 5.42 KiB | Viewed 6067 times ]

Statement 1 alone: both x = -1 and x = 2 gives 2 --> Not sufficient
Statement 2 alone: both x = -2 and x = 2 gives 2 --> Not sufficient

Together, when they overlap, only x = 2 gives 2 - Sufficient.

The table seems tedious but squaring 1's and 2's should come to you instantly and this table can be drawn in <1.5 mins and hence this question can be solved in <2 mins.
Attachments

4.PNG
4.PNG [ 6.93 KiB | Viewed 6034 times ]

User avatar
btrg
Joined: 31 Oct 2018
Last visit: 24 Jun 2019
Posts: 58
Own Kudos:
Given Kudos: 173
Location: India
Posts: 58
Kudos: 271
Kudos
Add Kudos
Bookmarks
Bookmark this Post
This is the correct explanation. Correct answer is E.




Apex231
If x is an integer, what is the value of x?
1) |x - |x^2|| = 2
x^2 is always positive. so |x^2| = x^2

x - x^2 is negative since X^2 > x for an integer

-(x - x^2) = 2
-x + x^2 = 2
x^2 -x - 2 = 0
x^2 -2x +x - 2 = 0
(x-2) (x+1)
x = 2 or x = -1 , two values , not sufficient.

2) |x2 - |x|| = 2
x^2 - |x| is positive since X^2 > x for an integer

|x| can be positive or negative. so two scenarios.

x^2 -x = 2
x^2 -x - 2 = 0
(x-2)(x+1) = 0

or

x^2 + x = 2
x^2 + x - 2 = 0
(x+2) (x-1) = 0

Multiple values so not sufficient.

(1) + (2) , still not sufficient.
avatar
aritranandy8
Joined: 03 May 2020
Last visit: 06 Mar 2021
Posts: 16
Own Kudos:
Posts: 16
Kudos: 2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
VeritasKarishma plz explain
User avatar
Rishabh800
Joined: 19 Feb 2022
Last visit: 07 Jan 2024
Posts: 5
Own Kudos:
Given Kudos: 7
Posts: 5
Kudos: 1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hi Bunuel!

Can you explain while solving Modulous questions when we have to square ( approach you used to solve the question) and when we have to use method like less than 0 or greater than zero as few people have used this approach?
User avatar
bumpbot
User avatar
Non-Human User
Joined: 09 Sep 2013
Last visit: 04 Jan 2021
Posts: 38,600
Own Kudos:
Posts: 38,600
Kudos: 1,079
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
   1   2 
Moderators:
Math Expert
105420 posts
496 posts