Jul 21 07:00 AM PDT  09:00 AM PDT Attend this webinar to learn a structured approach to solve 700+ Number Properties question in less than 2 minutes Jul 20 07:00 AM PDT  09:00 AM PDT Attend this webinar and master GMAT SC in 10 days by learning how meaning and logic can help you tackle 700+ level SC questions with ease. Jul 26 08:00 AM PDT  09:00 AM PDT The Competition Continues  Game of Timers is a teambased competition based on solving GMAT questions to win epic prizes! Starting July 1st, compete to win prep materials while studying for GMAT! Registration is Open! Ends July 26th Jul 27 07:00 AM PDT  09:00 AM PDT Learn reading strategies that can help even nonvoracious reader to master GMAT RC
Author 
Message 
TAGS:

Hide Tags

Math Expert
Joined: 02 Sep 2009
Posts: 56304

Re: If x/x<x which of the following must be true about x?
[#permalink]
Show Tags
07 Jul 2014, 01:41
Kconfused wrote: Bunuel wrote: nmohindru wrote: If \(\frac{x}{x}<x\) which of the following must be true about \(x\)?
(A) \(x>1\)
(B) \(x>1\)
(C) \(x<1\)
(D) \(x=1\)
(E) \(x^2>1\) This question was well explained by Durgesh and Ian Stewart, but since there are still some doubts, I'll try to add my 2 cents. First of all let's solve this inequality step by step and see what is the solution for it, or in other words let's see in which ranges this inequality holds true. Two cases for \(\frac{x}{x}<x\): A. \(x<0\) > \(x=x\) > \(\frac{x}{x}<x\) > \(1<x\) > \(1<x<0\); B. \(x>0\) > \(x=x\) > \(\frac{x}{x}<x\) > \(1<x\). So given inequality holds true in the ranges: \(1<x<0\) and \(x>1\). Which means that \(x\) can take values only from these ranges. {1} xxxx{0}{1} xxxxxxNow, we are asked which of the following must be true about \(x\). Option A can not be ALWAYS true because \(x\) can be from the range \(1<x<0\), eg \(\frac{1}{2}\) and \(x=\frac{1}{2}<1\). Only option which is ALWAYS true is B. ANY \(x\) from the ranges \(1<x<0\) and \(x>1\) will definitely be more the \(1\), all "red", possible xes are to the right of 1, which means that all possible xes are more than 1. Answer: B. Bunnel, if I were to multiply the original stem with x (since x is always positive) it would result in x*(x1) > 0. This would mean x > 0 and x > 1 x > 1 would lead to x < 1 and x > 1 . This is completely different from the answer you've reached. I see that your method is accurate and the answer justified, but can you please correct my method here. Thanks in advance! It would give the same answer. \(x*(x1) > 0\). This implies that both multiples have the same sign. \(x>0\) and \(x>1\) (since we consider positive x, then this transforms to x>1) > \(x>1\). \(x<0\) and \(x<1\) (since we consider negative x, then this transforms to x<1 > 1<x) > \(1<x<0\). The same ranges as in my solution. Hope it's clear.
_________________



Manager
Joined: 28 May 2014
Posts: 52

Re: If x/x<x which of the following must be true about x?
[#permalink]
Show Tags
15 Aug 2014, 07:50
Bunuel,
What if we square the inequality x/ x < x. Then we get (x^2 / x ) < x^2 which implies that x^2 < x^3. Is this correct? Please explain. Thanku



Math Expert
Joined: 02 Sep 2009
Posts: 56304

If x/x<x which of the following must be true about x?
[#permalink]
Show Tags
15 Aug 2014, 09:28
sri30kanth wrote: Bunuel,
What if we square the inequality x/ x < x. Then we get (x^2 / x ) < x^2 which implies that x^2 < x^3. Is this correct? Please explain. Thanku We can raise both parts of an inequality to an even power if we know that both parts of an inequality are nonnegative (the same for taking an even root of both sides of an inequality), which is not the case here. Also, the second step in your solution: never multiply (or reduce) an inequality by a variable (or the expression with a variable) if you don't know the sign of it, we don't know the sign of x, so we cannot multiply x^2/x < x^2 by x here. For more check here: inequalitiestipsandhints175001.html
_________________



Manager
Joined: 25 Mar 2013
Posts: 235
Location: United States
Concentration: Entrepreneurship, Marketing
GPA: 3.5

If x/x<x which of the following must be true about x?
[#permalink]
Show Tags
30 Nov 2014, 08:44
As Bunnel states. Two cases for \frac{x}{x}<x: A. x<0 > x=x > \frac{x}{x}<x > 1<x > 1<x<0; B. x>0 > x=x > \frac{x}{x}<x > 1<x. Concept is the absolute value of 5 equals 5, or, in mathematical symbols, I51 = 5. From above A. x<0 mean x is negative Assume x = 1 lxl = l x l becz x is negative /positive = X is always positive But not x=x ?????
_________________
I welcome analysis on my posts and kudo +1 if helpful. It helps me to improve my craft.Thank you



Veritas Prep GMAT Instructor
Joined: 16 Oct 2010
Posts: 9446
Location: Pune, India

Re: If x/x<x which of the following must be true about x?
[#permalink]
Show Tags
30 Nov 2014, 22:08
kanusha wrote: x<0 mean x is negative Assume x = 1 lxl = l x l becz x is negative /positive = X is always positive But not x=x ????? You assumed x = 1 You got x = 1 Is x = x? No. x is 1 but x is 1 Then what is x in terms of x? x = x 1 = (1) = 1 That is why you say that x = x when x is negative because then x becomes positive.
_________________
Karishma Veritas Prep GMAT Instructor
Learn more about how Veritas Prep can help you achieve a great GMAT score by checking out their GMAT Prep Options >



Intern
Joined: 21 Apr 2014
Posts: 39

Re: If x/x<x which of the following must be true about x?
[#permalink]
Show Tags
23 Feb 2015, 01:53
So, since we know that the absolute value is positive, we can multiply both sides by abs(x) without having to change the sign. x<x * x This means that x has to be greater than 1 or in between 1 and 0. You can figure this out from intuition or by testing number. 0 and 1 don't work because that would make both sides equal. We are looking for something that must be true, so if we can find a scenario for x that works outside the given parameters, we can eliminate it right away. A) doesn't have to be true, because x could because 1/2 works for x B) does have to be true there is no value for x that works and is below 1 C) doesn't have to be true, because 1/2 works D) doesn't have to be true, because x=1 doesn't even work E) doesn't have to be true because 1/2 works
_________________



Director
Joined: 07 Aug 2011
Posts: 518
Concentration: International Business, Technology

Re: If x/x<x which of the following must be true about x?
[#permalink]
Show Tags
06 Apr 2015, 18:53
nmohindru wrote: If \(\frac{x}{x}<x\) which of the following must be true about \(x\)?
(A) \(x>1\)
(B) \(x>1\)
(C) \(x<1\)
(D) \(x=1\)
(E) \(x^2>1\)
Attachments
gmatclub.jpg [ 77.27 KiB  Viewed 2416 times ]



Intern
Joined: 01 Apr 2014
Posts: 4

Re: If x/x<x which of the following must be true about x?
[#permalink]
Show Tags
09 Feb 2016, 00:29
CAN I SOLVE THE QUESTION IN THIS WAY.. x/x<x>x/X>1/X>x>1
Two Cases> X>1 or X<1
since,
ax+b>s>ax+b>1 or ax+b<1



Veritas Prep GMAT Instructor
Joined: 16 Oct 2010
Posts: 9446
Location: Pune, India

Re: If x/x<x which of the following must be true about x?
[#permalink]
Show Tags
09 Feb 2016, 03:52
akshay4gmat wrote: CAN I SOLVE THE QUESTION IN THIS WAY.. x/x<x>x/X>1/X>x>1
Two Cases> X>1 or X<1
since,
ax+b>s>ax+b>1 or ax+b<1 You cannot cancel off x's from the denominator without knowing the sign of x.
_________________
Karishma Veritas Prep GMAT Instructor
Learn more about how Veritas Prep can help you achieve a great GMAT score by checking out their GMAT Prep Options >



Retired Moderator
Joined: 27 Oct 2017
Posts: 1233
Location: India
Concentration: International Business, General Management
GPA: 3.64
WE: Business Development (Energy and Utilities)

Re: If x/x<x which of the following must be true about x?
[#permalink]
Show Tags
14 Apr 2018, 02:04
Hi The main point in this question is to understand what the question is asking.which of the following must be true about x?It means the question is asking about a Set of Values, which contains all the value of x which satisfy the given inequality. But the Big Idea is that the set may contain other values also which does not satisfy the inequality.It simply means the set must contains all the value of x satisfying the inequality but vice versa is not required. only after solving the inequality as explained above, 1<x<0 , when x is negative , or x>1 when x is positive. So option B x>1 is the only the set of values which contains all the above required values of x. Hence Answer B
_________________



Manager
Joined: 02 Jan 2016
Posts: 124

Re: If x/x<x which of the following must be true about x?
[#permalink]
Show Tags
26 May 2018, 05:50
Its always a good idea to simply or manipulate the Question Stem
X divided by X will either give a "1" or "1", depending on "sign of X"
Incase "1" then X > 1 and Incase "1" X > "1",
If you think on this X >1 might be true but not always true, but X > 1 will always be true.
Even if "X" is a fraction, X>1 is true and this also matches our answer.



Intern
Joined: 26 Jul 2018
Posts: 13

Re: If x/x<x which of the following must be true about x?
[#permalink]
Show Tags
08 Sep 2018, 16:50
If x=0, then
0/0 < 0
undefined < 0
makes the choice x>1 absurd.



Intern
Joined: 06 Aug 2018
Posts: 15
Concentration: Strategy, Technology
GMAT 1: 680 Q49 V34 GMAT 2: 740 Q51 V39
GPA: 2.24

Re: If x/x<x which of the following must be true about x?
[#permalink]
Show Tags
09 Sep 2018, 10:24
Quote: Think again. Every value greater than 1 need not satisfy the inequality but every value satisfying the inequality must be greater than 1.
Earlier I marked A as the answer, but this line made it crystal clear that the correct choice should be B



Intern
Joined: 30 Apr 2017
Posts: 6

Re: If x/x<x which of the following must be true about x?
[#permalink]
Show Tags
06 Oct 2018, 06:00
Bunuel wrote: nmohindru wrote: If \(\frac{x}{x}<x\) which of the following must be true about \(x\)?
(A) \(x>1\)
(B) \(x>1\)
(C) \(x<1\)
(D) \(x=1\)
(E) \(x^2>1\) This question was well explained by Durgesh and Ian Stewart, but since there are still some doubts, I'll try to add my 2 cents. First of all let's solve this inequality step by step and see what is the solution for it, or in other words let's see in which ranges this inequality holds true. Two cases for \(\frac{x}{x}<x\): A. \(x<0\) > \(x=x\) > \(\frac{x}{x}<x\) > \(1<x\) > \(1<x<0\); B. \(x>0\) > \(x=x\) > \(\frac{x}{x}<x\) > \(1<x\). So given inequality holds true in the ranges: \(1<x<0\) and \(x>1\). Which means that \(x\) can take values only from these ranges. {1} xxxx{0}{1} xxxxxxNow, we are asked which of the following must be true about \(x\). Option A can not be ALWAYS true because \(x\) can be from the range \(1<x<0\), eg \(\frac{1}{2}\) and \(x=\frac{1}{2}<1\). Only option which is ALWAYS true is B. ANY \(x\) from the ranges \(1<x<0\) and \(x>1\) will definitely be more the \(1\), all "red", possible xes are to the right of 1, which means that all possible xes are more than 1. Answer: B. in the 1 case when x<0, why arent changing the sign of the inequality. i thought when we open a mod with a negative sign we change the sign of the inequality. p.s this question has jolted all my concepts of mod!



Retired Moderator
Joined: 27 Oct 2017
Posts: 1233
Location: India
Concentration: International Business, General Management
GPA: 3.64
WE: Business Development (Energy and Utilities)

Re: If x/x<x which of the following must be true about x?
[#permalink]
Show Tags
12 Oct 2018, 07:53
Hi We change the sign of inequality only when we divide or multiply by a negative number. Jasveensingh wrote: in the 1 case when x<0, why arent changing the sign of the inequality. i thought when we open a mod with a negative sign we change the sign of the inequality. p.s this question has jolted all my concepts of mod![/quote]
_________________



Intern
Status: when you say,"I can or I can't", Both times you are right!
Joined: 26 Nov 2018
Posts: 31
Location: India

Re: If x/x<x which of the following must be true about x?
[#permalink]
Show Tags
08 Jan 2019, 20:16
x/lxl<x =x/x<lxl =1<lXl or lxl>1
which gives 1>x>1
how could it be "B"?



Retired Moderator
Joined: 27 Oct 2017
Posts: 1233
Location: India
Concentration: International Business, General Management
GPA: 3.64
WE: Business Development (Energy and Utilities)

Re: If x/x<x which of the following must be true about x?
[#permalink]
Show Tags
09 Jan 2019, 06:53
Did you read the above posts? Rupesh1Nonly wrote: x/lxl<x =x/x<lxl =1<lXl or lxl>1
which gives 1>x>1
how could it be "B"? Posted from my mobile device
_________________



Manager
Joined: 11 Aug 2018
Posts: 111
Location: Pakistan
GPA: 2.73

Re: If x/x<x which of the following must be true about x?
[#permalink]
Show Tags
14 Feb 2019, 23:14
A tricky Mod multiplication.
_________________
If you like this post, be kind and help me with Kudos!
Cheers!



Manager
Joined: 29 Nov 2016
Posts: 140

Re: If x/x<x which of the following must be true about x?
[#permalink]
Show Tags
23 Feb 2019, 00:42
chetan2uI have a totally different doubt and usually I face it whenever I solve modulus questions. we say X=X, when X<0 X=X , when X>0 Why don't we replace these values in actual X i.e. why do we open only X if X<0. Like in this question why don't we substitute X/X , if X<0 would lead to X/X which will give 1. In this question the result is same but I have seen questions where these substitution leads to different result Thanks Posted from my mobile device



Math Expert
Joined: 02 Aug 2009
Posts: 7764

Re: If x/x<x which of the following must be true about x?
[#permalink]
Show Tags
23 Feb 2019, 01:41
Mudit27021988 wrote: chetan2uI have a totally different doubt and usually I face it whenever I solve modulus questions. we say X=X, when X<0 X=X , when X>0 Why don't we replace these values in actual X i.e. why do we open only X if X<0. Like in this question why don't we substitute X/X , if X<0 would lead to X/X which will give 1. In this question the result is same but I have seen questions where these substitution leads to different result Thanks Posted from my mobile device Hi.. When you say x is negative, the negative sign is already there in the variable. So if x<0, then x>0.. Let us take an example.. Say x is 2.. So X/X will be 2/2=2/2=1.. But if you change the sign that is x/X=x/X=(1)/1=1/1=1
_________________




Re: If x/x<x which of the following must be true about x?
[#permalink]
23 Feb 2019, 01:41



Go to page
Previous
1 2 3 4
Next
[ 67 posts ]



