Last visit was: 19 Nov 2025, 00:20 It is currently 19 Nov 2025, 00:20
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 18 Nov 2025
Posts: 16,267
Own Kudos:
76,984
 [4]
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,267
Kudos: 76,984
 [4]
3
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
User avatar
sanjoo
Joined: 06 Aug 2011
Last visit: 24 Dec 2016
Posts: 266
Own Kudos:
Given Kudos: 82
Posts: 266
Kudos: 663
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 18 Nov 2025
Posts: 16,267
Own Kudos:
76,984
 [1]
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,267
Kudos: 76,984
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
EvaJager
Joined: 22 Mar 2011
Last visit: 31 Aug 2016
Posts: 514
Own Kudos:
2,325
 [1]
Given Kudos: 43
WE:Science (Education)
Posts: 514
Kudos: 2,325
 [1]
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
sanjoo
VeritasPrepKarishma
There was a lot of confusion between options (A) and (B). Therefore, I would like to explain why option (B) is correct using diagrams.

Forget this question for a minute. Say instead you have this question:

Question 1: x > 2 and x < 7. What integral values can x take?
I guess most of you will come up with 3, 4, 5, 6. That’s correct. I can represent this on the number line.
Attachment:
Ques3.jpg
You see that the overlapping area includes 3, 4, 5 and 6.

Now consider this:

Question 2: x > 2 or x > 5. What integral values can x take?
Let’s draw that number line again.
Attachment:
Ques4.jpg
So is the solution again the overlapping numbers i.e. all integers greater than 5? No. This question is different. x is greater than 2 OR greater than 5. This means that if x satisfies at least one of these conditions, it is included in your answer. Think of sets. AND means it should be in both the sets (i.e. overlapping). OR means it should be in at least one of the sets. Hence, which values can x take? All integral values starting from 3 onwards i.e. 3, 4, 5, 6, 7, 8, 9 …

Now go back to this question. The solution is a one liner.

If \(\frac{x}{|x|}<x\) which of the following must be true about \(x\)?
(A) \(x>1\)
(B) \(x>-1\)
(C) \(|x|<1\)
(D) \(|x|=1\)
(E) \(|x|^2>1\)

\(\frac{x}{|x|}\) is either 1 or -1.
So x > 1 or x > -1
So which values can x take? All values that are included in at least one of the sets. Therefore, x > -1.


But wat if x will be zero?? that will be infinitive..!!..
I think answer a is correct.. m still confused :(.

Stating that we must have \(x > -1\), it doesn't mean that all the numbers with this property will satisfy the inequality given in the question.
Also, the question is not asking for the set of solutions of the given inequality (which means all the values for which the inequality holds).
It asks for a MUST or necessary condition. And we can easily see that another necessary condition, besides B, is \(x\) being non-zero.
If we assume that \(x\leq -1\), then we get
\(\frac{x}{|x|}=\frac{x}{-x}=-1<x\)
which contradicts \(x\leq -1\).
So, necessarily \(x\) must be greater than \(-1\).

Is this enough? Are there other conditions? Do all numbers greater than \(-1\) satisfy the given inequality in the question?
This is not what the question is about. But for sure, if \(x\) is not greater than \(-1\), than the inequality cannot hold.
Therefore, \(x\) MUST be greater than \(-1\).
User avatar
dexerash
Joined: 12 Mar 2012
Last visit: 05 Sep 2019
Posts: 77
Own Kudos:
Given Kudos: 17
Location: India
Concentration: Technology, General Management
GMAT Date: 07-23-2012
WE:Programming (Telecommunications)
Posts: 77
Kudos: 114
Kudos
Add Kudos
Bookmarks
Bookmark this Post
My learning:

Since this Question is asking "must be true about x" so the answer should cover the whole range of x, even if there is a gap (in this case it is from 0 to 1)

If the question would have asked "what all values of x satisfy this equation", then the correct answer would be "x > 1" (considering 0 < x < 1 is missing from choices)

Am I correct!?
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 18 Nov 2025
Posts: 16,267
Own Kudos:
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,267
Kudos: 76,984
Kudos
Add Kudos
Bookmarks
Bookmark this Post
dexerash
My learning:

Since this Question is asking "must be true about x" so the answer should cover the whole range of x, even if there is a gap (in this case it is from 0 to 1)

If the question would have asked "what all values of x satisfy this equation", then the correct answer would be "x > 1" (considering 0 < x < 1 is missing from choices)

Am I correct!?

Yes, you are correct that 'must be true about x' means the answer should cover the entire range of x. There can be some values in that range which x cannot take.

Had the question asked for the 'all values of x that satisfy this equation', the correct answer would be -1 < x< 0 or x > 1. x can take the values from -1 to 0 too so it should also appear in the range.
x>1 gives only the partial range of x.
avatar
seabhi
Joined: 22 Aug 2013
Last visit: 11 Nov 2015
Posts: 61
Own Kudos:
Given Kudos: 60
Schools: ISB '15
Schools: ISB '15
Posts: 61
Kudos: 180
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hi Bunuel,
Can you help clear the confusion with X = 1/2.

Thanks.
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,379
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,379
Kudos: 778,147
Kudos
Add Kudos
Bookmarks
Bookmark this Post
seabhi
Hi Bunuel,
Can you help clear the confusion with X = 1/2.

Thanks.

x/|x|<x, which of the following must be true about x ?

A. x>1
B. x>-1
C. |x|<1
D. |x|=1
E. |x|^2>1

We are given that \(\frac{x}{|x|}<x\) (this is a true inequality), so first of all we should find the ranges of \(x\) for which this inequality holds true.

\(\frac{x}{|x|}< x\) multiply both sides of inequality by \(|x|\) (side note: we can safely do this as absolute value is non-negative and in this case we know it's not zero too) --> \(x<x|x|\) --> \(x(|x|-1)>0\):
Either \(x>0\) and \(|x|-1>0\), so \(x>1\) or \(x<-1\) --> \(x>1\);
Or \(x<0\) and \(|x|-1<0\), so \(-1<x<1\) --> \(-1<x<0\).

So we have that: \(-1<x<0\) or \(x>1\). Note \(x\) is ONLY from these ranges.

Option B says: \(x>-1\) --> ANY \(x\) from above two ranges would be more than -1, so B is always true.

Answer: B.
avatar
Kconfused
Joined: 17 Oct 2013
Last visit: 30 Mar 2016
Posts: 32
Own Kudos:
Given Kudos: 549
Location: India
Concentration: Strategy, Statistics
Schools: ISB '17 (A)
GMAT 1: 730 Q49 V40
WE:Analyst (Computer Software)
Schools: ISB '17 (A)
GMAT 1: 730 Q49 V40
Posts: 32
Kudos: 81
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
nmohindru
If \(\frac{x}{|x|}<x\) which of the following must be true about \(x\)?

(A) \(x>1\)

(B) \(x>-1\)

(C) \(|x|<1\)

(D) \(|x|=1\)

(E) \(|x|^2>1\)

This question was well explained by Durgesh and Ian Stewart, but since there are still some doubts, I'll try to add my 2 cents.

First of all let's solve this inequality step by step and see what is the solution for it, or in other words let's see in which ranges this inequality holds true.

Two cases for \(\frac{x}{|x|}<x\):

A. \(x<0\) --> \(|x|=-x\) --> \(\frac{x}{-x}<x\) --> \(-1<x\) --> \(-1<x<0\);

B. \(x>0\) --> \(|x|=x\) --> \(\frac{x}{x}<x\) --> \(1<x\).

So given inequality holds true in the ranges: \(-1<x<0\) and \(x>1\). Which means that \(x\) can take values only from these ranges.

------{-1}xxxx{0}----{1}xxxxxx

Now, we are asked which of the following must be true about \(x\). Option A can not be ALWAYS true because \(x\) can be from the range \(-1<x<0\), eg \(-\frac{1}{2}\) and \(x=-\frac{1}{2}<1\).

Only option which is ALWAYS true is B. ANY \(x\) from the ranges \(-1<x<0\) and \(x>1\) will definitely be more the \(-1\), all "red", possible x-es are to the right of -1, which means that all possible x-es are more than -1.

Answer: B.

Bunnel, if I were to multiply the original stem with |x| (since |x| is always positive) it would result in x*(|x|-1) > 0.
This would mean x > 0 and |x| > 1
|x| > 1 would lead to x < -1 and x > 1 . This is completely different from the answer you've reached. I see that your method is accurate and the answer justified, but can you please correct my method here.
Thanks in advance!
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,379
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,379
Kudos: 778,147
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Kconfused
Bunuel
nmohindru
If \(\frac{x}{|x|}<x\) which of the following must be true about \(x\)?

(A) \(x>1\)

(B) \(x>-1\)

(C) \(|x|<1\)

(D) \(|x|=1\)

(E) \(|x|^2>1\)

This question was well explained by Durgesh and Ian Stewart, but since there are still some doubts, I'll try to add my 2 cents.

First of all let's solve this inequality step by step and see what is the solution for it, or in other words let's see in which ranges this inequality holds true.

Two cases for \(\frac{x}{|x|}<x\):

A. \(x<0\) --> \(|x|=-x\) --> \(\frac{x}{-x}<x\) --> \(-1<x\) --> \(-1<x<0\);

B. \(x>0\) --> \(|x|=x\) --> \(\frac{x}{x}<x\) --> \(1<x\).

So given inequality holds true in the ranges: \(-1<x<0\) and \(x>1\). Which means that \(x\) can take values only from these ranges.

------{-1}xxxx{0}----{1}xxxxxx

Now, we are asked which of the following must be true about \(x\). Option A can not be ALWAYS true because \(x\) can be from the range \(-1<x<0\), eg \(-\frac{1}{2}\) and \(x=-\frac{1}{2}<1\).

Only option which is ALWAYS true is B. ANY \(x\) from the ranges \(-1<x<0\) and \(x>1\) will definitely be more the \(-1\), all "red", possible x-es are to the right of -1, which means that all possible x-es are more than -1.

Answer: B.

Bunnel, if I were to multiply the original stem with |x| (since |x| is always positive) it would result in x*(|x|-1) > 0.
This would mean x > 0 and |x| > 1
|x| > 1 would lead to x < -1 and x > 1 . This is completely different from the answer you've reached. I see that your method is accurate and the answer justified, but can you please correct my method here.
Thanks in advance!

It would give the same answer.

\(x*(|x|-1) > 0\). This implies that both multiples have the same sign.

\(x>0\) and \(|x|>1\) (since we consider positive x, then this transforms to x>1) --> \(x>1\).
\(x<0\) and \(|x|<1\) (since we consider negative x, then this transforms to -x<1 --> -1<x) --> \(-1<x<0\).

The same ranges as in my solution.

Hope it's clear.
User avatar
sri30kanth
Joined: 28 May 2014
Last visit: 09 Feb 2015
Posts: 38
Own Kudos:
Given Kudos: 31
Schools: NTU '16
GMAT 1: 620 Q49 V27
Schools: NTU '16
GMAT 1: 620 Q49 V27
Posts: 38
Kudos: 8
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel,

What if we square the inequality x/ |x| < x. Then we get (x^2 / x ) < x^2 which implies that x^2 < x^3. Is this correct? Please explain. Thanku
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,379
Own Kudos:
778,147
 [1]
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,379
Kudos: 778,147
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
sri30kanth
Bunuel,

What if we square the inequality x/ |x| < x. Then we get (x^2 / x ) < x^2 which implies that x^2 < x^3. Is this correct? Please explain. Thanku

We can raise both parts of an inequality to an even power if we know that both parts of an inequality are non-negative (the same for taking an even root of both sides of an inequality), which is not the case here.

Also, the second step in your solution: never multiply (or reduce) an inequality by a variable (or the expression with a variable) if you don't know the sign of it, we don't know the sign of x, so we cannot multiply x^2/x < x^2 by x here.

For more check here: inequalities-tips-and-hints-175001.html
User avatar
AverageGuy123
Joined: 24 Jun 2014
Last visit: 10 Jul 2020
Posts: 52
Own Kudos:
Given Kudos: 105
Concentration: Social Entrepreneurship, Nonprofit
Posts: 52
Kudos: 54
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Brunel, Can you please explain why option E is not feasible?
User avatar
EgmatQuantExpert
User avatar
e-GMAT Representative
Joined: 04 Jan 2015
Last visit: 02 Apr 2024
Posts: 3,663
Own Kudos:
20,164
 [1]
Given Kudos: 165
Expert
Expert reply
Posts: 3,663
Kudos: 20,164
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
AverageGuy123
Brunel, Can you please explain why option E is not feasible?

Dear AverageuGuy123

As Bunuel explained above,

Either -1 < x < 0
Or x > 1

Now, |x| as you know, represents the magnitude of x. Option E says that |x|^2 must be greater than 1.

Let's first consider the case when -1 < x < 0

A possible value of x in this case is -0.5
So, what is the value of |x|^2? It is equal to 0.25

Is it greater than 1? NO

Let's now consider the case when x > 1

A possible value of x in this case is 2.
So, what is the value of |x|^2? It's 4.

Is it greater than 1? YES

So, as we see, that |x|^2 CAN BE greater than 1. But can we say that |x|^2 MUST BE greater than 1? NO, because |x|^2 is not greater than 1 for all possible values of x.

So, the key takeaway from this discussion is that:

we need to be careful whether the question is asking about MUST BE TRUE statements or about CAN BE TRUE statements.

Hope this helped! :)

- Japinder
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 18 Nov 2025
Posts: 16,267
Own Kudos:
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,267
Kudos: 76,984
Kudos
Add Kudos
Bookmarks
Bookmark this Post
AverageGuy123
Brunel, Can you please explain why option E is not feasible?

You can plug in numbers to eliminate options.

"which of the following must be true about x" means that every acceptable value of x must lie in the range given in the correct option. The acceptable values of x are the values for which x/|x| < x.

A. x>2
Must x be greater than 2?

This should make you check for 2.
2/|2| < 2
1 < 2 (True)
So 2 is an acceptable value of x. But 2 is not greater than 2.
So this option is not correct. This also makes you eliminate options (C) and (D).

E. |x|^2>1
Must x be greater than 1 or less than -1?

Check for 1/2
(1/2)/|1/2| < 1/2
1 < 1/2 (False)

Check for -1/2
(-1/2)/|-1/2| < -1/2
-1 < -1/2 (True)

So x = -1/2 is an acceptable value but it does not lie in this range. Hence option (E) is also incorrect.

Answer must be (B)
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,379
Own Kudos:
778,147
 [1]
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,379
Kudos: 778,147
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
shanky315
What is wrong with Option A, plugging numbers satisfy this condition. Bunuel can you please suggest.

Posted from my mobile device

x can be -1/2 and in this case x > 1 (option A) will not be correct.
User avatar
benetamary
Joined: 14 Aug 2023
Last visit: 01 Mar 2024
Posts: 3
Given Kudos: 258
Location: India
Posts: 3
Kudos: 0
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
x/|x|<x, which of the following must be true about x ?

A. x>1
B. x>-1
C. |x|<1
D. |x|=1
E. |x|^2>1

We are given that \(\frac{x}{|x|}<x\) (this is a true inequality), so first of all we should find the ranges of \(x\) for which this inequality holds true.

\(\frac{x}{|x|}< x\) multiply both sides of inequality by \(|x|\) (side note: we can safely do this as absolute value is non-negative and in this case we know it's not zero too) --> \(x<x|x|\) --> \(x(|x|-1)>0\):
Either \(x>0\) and \(|x|-1>0\), so \(x>1\) or \(x<-1\) --> \(x>1\);
Or \(x<0\) and \(|x|-1<0\), so \(-1<x<1\) --> \(-1<x<0\).

So we have that: \(-1<x<0\) or \(x>1\). Note \(x\) is ONLY from these ranges.

Option B says: \(x>-1\) --> ANY \(x\) from above two ranges would be more than -1, so B is always true.

Answer: B.
When we take the negative value for x won't it be -x/|x| <-x , why are we not considering the negative sign on the right side ? So once we solve it we get 1>x. Am I missing something?
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,379
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,379
Kudos: 778,147
Kudos
Add Kudos
Bookmarks
Bookmark this Post
benetamary
Bunuel
x/|x|<x, which of the following must be true about x ?

A. x>1
B. x>-1
C. |x|<1
D. |x|=1
E. |x|^2>1

We are given that \(\frac{x}{|x|}<x\) (this is a true inequality), so first of all we should find the ranges of \(x\) for which this inequality holds true.

\(\frac{x}{|x|}< x\) multiply both sides of inequality by \(|x|\) (side note: we can safely do this as absolute value is non-negative and in this case we know it's not zero too) --> \(x<x|x|\) --> \(x(|x|-1)>0\):
Either \(x>0\) and \(|x|-1>0\), so \(x>1\) or \(x<-1\) --> \(x>1\);
Or \(x<0\) and \(|x|-1<0\), so \(-1<x<1\) --> \(-1<x<0\).

So we have that: \(-1<x<0\) or \(x>1\). Note \(x\) is ONLY from these ranges.

Option B says: \(x>-1\) --> ANY \(x\) from above two ranges would be more than -1, so B is always true.

Answer: B.
When we take the negative value for x won't it be -x/|x| <-x , why are we not considering the negative sign on the right side ? So once we solve it we get 1>x. Am I missing something?

If x is negative, it's incorrect to replace x with -x. For instance, consider x = -2. In this case, x is already negative. There's no logical reason to alter it to -x = -2, as it would distort the original value.
User avatar
Gprabhumir
Joined: 16 Jan 2023
Last visit: 13 Nov 2025
Posts: 101
Own Kudos:
Given Kudos: 83
Location: India
Concentration: Finance, Accounting
GMAT Focus 1: 655 Q85 V81 DI82 (Online)
WE:Consulting (Consulting)
GMAT Focus 1: 655 Q85 V81 DI82 (Online)
Posts: 101
Kudos: 259
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
nmohindru
If \(\frac{x}{|x|}<x\) which of the following must be true about \(x\)?

(A) \(x>1\)

(B) \(x>-1\)

(C) \(|x|<1\)

(D) \(|x|=1\)

(E) \(|x|^2>1\)

This question was well explained by Durgesh and Ian Stewart, but since there are still some doubts, I'll try to add my 2 cents.

First of all let's solve this inequality step by step and see what is the solution for it, or in other words let's see in which ranges this inequality holds true.

Two cases for \(\frac{x}{|x|}<x\):

A. \(x<0\) --> \(|x|=-x\) --> \(\frac{x}{-x}<x\) --> \(-1<x\) --> \(-1<x<0\);

B. \(x>0\) --> \(|x|=x\) --> \(\frac{x}{x}<x\) --> \(1<x\).

So given inequality holds true in the ranges: \(-1<x<0\) and \(x>1\). Which means that \(x\) can take values only from these ranges.

------{-1}xxxx{0}----{1}xxxxxx

Now, we are asked which of the following must be true about \(x\). Option A cannot be ALWAYS true because \(x\) can be from the range \(-1<x<0\), eg \(-\frac{1}{2}\) and \(x=-\frac{1}{2}<1\).

Only option which is ALWAYS true is B. ANY \(x\) from the ranges \(-1<x<0\) and \(x>1\) will definitely be more the \(-1\), all "red", possible x-es are to the right of -1, which means that all possible x-es are more than -1.

Answer: B.

Hi Bunuel ,

While we choose x>-1, this will hold true for x=1 as well.
Then, 1/1 is not < 1
1/1 = 1

The equation will be satisfied for all values of x>1.

Therefore, I think A shall be the answer. I do understand that in situations such as x=-1/2, the equation is satisfied. However, option B does not seem to be full proof.

Let me know what you think.
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,379
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,379
Kudos: 778,147
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Gprabhumir
Bunuel
nmohindru
If \(\frac{x}{|x|}<x\) which of the following must be true about \(x\)?

(A) \(x>1\)

(B) \(x>-1\)

(C) \(|x|<1\)

(D) \(|x|=1\)

(E) \(|x|^2>1\)

This question was well explained by Durgesh and Ian Stewart, but since there are still some doubts, I'll try to add my 2 cents.

First of all let's solve this inequality step by step and see what is the solution for it, or in other words let's see in which ranges this inequality holds true.

Two cases for \(\frac{x}{|x|}<x\):

A. \(x<0\) --> \(|x|=-x\) --> \(\frac{x}{-x}<x\) --> \(-1<x\) --> \(-1<x<0\);

B. \(x>0\) --> \(|x|=x\) --> \(\frac{x}{x}<x\) --> \(1<x\).

So given inequality holds true in the ranges: \(-1<x<0\) and \(x>1\). Which means that \(x\) can take values only from these ranges.

------{-1}xxxx{0}----{1}xxxxxx

Now, we are asked which of the following must be true about \(x\). Option A cannot be ALWAYS true because \(x\) can be from the range \(-1<x<0\), eg \(-\frac{1}{2}\) and \(x=-\frac{1}{2}<1\).

Only option which is ALWAYS true is B. ANY \(x\) from the ranges \(-1<x<0\) and \(x>1\) will definitely be more the \(-1\), all "red", possible x-es are to the right of -1, which means that all possible x-es are more than -1.

Answer: B.

Hi Bunuel ,

While we choose x>-1, this will hold true for x=1 as well.
Then, 1/1 is not < 1
1/1 = 1

This logic will hold true for all values of x>1.

Therefore, I think A shall be the answer. I do understand that in situations such as x=-1/2, the equation is satisfied. However, option B does not seem to be full proof.

Let me know what you think.

I believe your question has been addressed several times in this thread. To avoid repetition, I recommend rereading the solution carefully. I hope it helps.
   1   2   3   
Moderators:
Math Expert
105379 posts
Tuck School Moderator
805 posts