Last visit was: 20 Nov 2025, 06:02 It is currently 20 Nov 2025, 06:02
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
AnkitK
Joined: 11 Feb 2011
Last visit: 01 Dec 2012
Posts: 86
Own Kudos:
1,329
 [11]
Given Kudos: 21
Posts: 86
Kudos: 1,329
 [11]
3
Kudos
Add Kudos
8
Bookmarks
Bookmark this Post
User avatar
gmat1220
Joined: 03 Feb 2011
Last visit: 17 Feb 2020
Posts: 466
Own Kudos:
987
 [1]
Given Kudos: 123
Status:Impossible is not a fact. It's an opinion. It's a dare. Impossible is nothing.
Affiliations: University of Chicago Booth School of Business
Products:
Posts: 466
Kudos: 987
 [1]
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
User avatar
subhashghosh
User avatar
Retired Moderator
Joined: 16 Nov 2010
Last visit: 25 Jun 2024
Posts: 896
Own Kudos:
Given Kudos: 43
Location: United States (IN)
Concentration: Strategy, Technology
Products:
Posts: 896
Kudos: 1,279
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
amit2k9
Joined: 08 May 2009
Last visit: 18 Jun 2017
Posts: 535
Own Kudos:
Given Kudos: 10
Status:There is always something new !!
Affiliations: PMI,QAI Global,eXampleCG
Posts: 535
Kudos: 636
Kudos
Add Kudos
Bookmarks
Bookmark this Post
y-z = odd means either y is even and z is odd or vice versa. Hence A.
yz = even means y,z even or y is even and z odd and viceversa.

Thus A.
User avatar
IanStewart
User avatar
GMAT Tutor
Joined: 24 Jun 2008
Last visit: 19 Nov 2025
Posts: 4,145
Own Kudos:
Given Kudos: 99
Expert
Expert reply
Posts: 4,145
Kudos: 10,990
Kudos
Add Kudos
Bookmarks
Bookmark this Post
AnkitK
y and z are nin zero integers ,is the square of (y+z) even?
1.y-z is odd
2.yz is even

As I posted in another thread a moment ago, positive integer exponents never matter in an even/odd question, so we can just ignore the 'square of' part of the question: it's just asking if y+z is even. Addition and subtraction follow the same odd/even rules, so if y-z is odd, then y+z is odd, and Statement 1 is sufficient. From Statement 2, y and z can both be even, in which case y+z is even, or one can be even and the other odd, in which case y+z is odd. So the answer is A.
User avatar
Spidy001
Joined: 01 Feb 2011
Last visit: 16 Feb 2015
Posts: 298
Own Kudos:
348
 [1]
Given Kudos: 42
Posts: 298
Kudos: 348
 [1]
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
1. Sufficient

y-z is odd
=> either
y is even,z is odd or
y is odd ,z is even

in both the scenarios mentioned above y+z is odd = > (y+z)^ 2 is odd

2. Not sufficient
yz is even

atleast one of the above is even

when both y and z are even , given expression is even
but when y is odd and z is even , given expression is odd

Answer is A.
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 20 Nov 2025
Posts: 105,416
Own Kudos:
Given Kudos: 99,987
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,416
Kudos: 778,499
Kudos
Add Kudos
Bookmarks
Bookmark this Post

Tough and Tricky questions: properties of numbers.



If y and z are nonzero integers, is the square of (y + z) even?

(1) y – z is odd.
(2) yz is even.
User avatar
WoundedTiger
Joined: 25 Apr 2012
Last visit: 25 Sep 2024
Posts: 521
Own Kudos:
2,535
 [2]
Given Kudos: 740
Location: India
GPA: 3.21
WE:Business Development (Other)
Products:
Posts: 521
Kudos: 2,535
 [2]
1
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
Bunuel

Tough and Tricky questions: properties of numbers.



If y and z are nonzero integers, is the square of (y + z) even?

(1) y – z is odd.
(2) yz is even.

We know that even +/- even= Even
Even+/-Odd=Odd

Odd+/-Odd= Even..

St 1 tells us that y-z =odd : So one is even and other is odd..Sum of even+odd=Odd..Therefore (Odd)^2=Odd..St1 is sufficient
St2 says yz=even : this implies either both are even or atleast one is even...

We can have 2 cases: Even+Even =Even or Odd+Even=Odd

Ans is A
User avatar
EMPOWERgmatRichC
User avatar
Major Poster
Joined: 19 Dec 2014
Last visit: 31 Dec 2023
Posts: 21,784
Own Kudos:
Given Kudos: 450
Status:GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Location: United States (CA)
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Expert
Expert reply
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Posts: 21,784
Kudos: 12,807
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hi All,

It looks like everyone who posted in this thread was comfortable with the Number Property rules that this DS question was built on. If you don't recognize those rules when you look at this question, then you can still answer it by TESTing VALUES.

We're told that Y and Z are NON-ZERO INTEGERS. We're asked if (Y+Z)^2 is even. This is a YES/NO question.

Fact 1: Y - Z = ODD

Let's TEST VALUES

IF....
Y = 3
Z = 2
Y-Z = 1
(3+2)^2 = 25 and the answer to the question is NO.

Notice how in the first example, we used an odd number for Y and an even number for Z. Let's try something different next...

IF....
Y=6
Z=1
Y-Z=5
(6+1)^2 = 49 and the answer to the question is NO.

The 'restriction' that Fact 1 places on us means that Y and Z CANNOT have the same sign. Even - Even = Even (e.g. 6-2=4); Odd - Odd = Even (e.g. 3-1=2). But since we're supposed to have an ODD number as a result, neither of these options is a possibility. With the information from Fact 1, the answer to the question is ALWAYS NO.
Fact 1 is SUFFICIENT

Fact 2: YZ = EVEN

IF....
Y=2
Z=2
YZ = 4
(2+2)^2 = 16 and the answer to the question is YES.

IF...
Y=2
Z=3
YZ=6
(2+3)^2 = 25 and the answer to the question is NO
Fact 2 is INSUFFICIENT

Final Answer:
GMAT assassins aren't born, they're made,
Rich
User avatar
gmat6nplus1
Joined: 04 Oct 2013
Last visit: 09 Jan 2019
Posts: 141
Own Kudos:
Given Kudos: 29
Concentration: Finance, Leadership
GMAT 1: 590 Q40 V30
GMAT 2: 730 Q49 V40
WE:Project Management (Media/Entertainment)
GMAT 2: 730 Q49 V40
Posts: 141
Kudos: 678
Kudos
Add Kudos
Bookmarks
Bookmark this Post
AnkitK
If y and z are nonzero integers, is the square of (y + z) even?

(1) y – z is odd.
(2) yz is even.

square (y+z) = y^2+2yz+z^2 --> mixed term will always be even, so Case 1: y and z are both odd or even the whole expression will be even; Case 2 y and z are even/odd or viceversa the whole expression will be odd.

statement 1: y-z=O // Case 2. Sufficient.
statement 2: yz = E // Either Case 1 or Case 2 Not sufficient.

Answer A.
User avatar
grimm1111
Joined: 24 Nov 2015
Last visit: 22 Sep 2017
Posts: 13
Own Kudos:
Given Kudos: 4
Posts: 13
Kudos: 5
Kudos
Add Kudos
Bookmarks
Bookmark this Post
In my opinion, this type of problem is super easy if you really understand what you're being asked, and then re-frame the question to be more straightforward. It's more about the question than the math.

Given: (y,z) ≠ 0, y and z are integers

Original Question: Is (y + z) even?

We know that EVEN + EVEN = EVEN, and ODD + ODD = EVEN...

In other words, we know that when two numbers of the same parity are added together, the result is always even. When two numbers of different parity are added together (eg. odd + even), the answer is always odd. ("Parity" is the word that describes whether a number is odd or even)

So the real question being asked is: Are "y" and "z" of the same parity?


A.) (y - z) is odd.

(y - z) can only be odd if they are different parities. Since we now know that Y and Z are of different parities, we know that (y + z) is odd. SUFFICIENT.


B.) yz is even.

For yz to be even, either y, or z, or both can be even. We can't answer the question "Are 'y' and 'z' of the same parity?" with the information given here. INSUFFICIENT.

answer is A
User avatar
gaylord2000
Joined: 05 May 2025
Last visit: 08 Oct 2025
Posts: 1
Given Kudos: 23
Posts: 1
Kudos: 0
Kudos
Add Kudos
Bookmarks
Bookmark this Post
What exactly do the options A,B,C,D,E mean here? Cos I cant see them anywhere
AnkitK
If y and z are nonzero integers, is the square of (y + z) even?

(1) y – z is odd.
(2) yz is even.
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 20 Nov 2025
Posts: 105,416
Own Kudos:
Given Kudos: 99,987
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,416
Kudos: 778,499
Kudos
Add Kudos
Bookmarks
Bookmark this Post
gaylord2000
What exactly do the options A,B,C,D,E mean here? Cos I cant see them anywhere
AnkitK
If y and z are nonzero integers, is the square of (y + z) even?

(1) y – z is odd.
(2) yz is even.
Hi,

This is a data sufficiency question. Options for DS questions are always the same and usually omitted on the site.

The data sufficiency problem consists of a question and two statements, labeled (1) and (2), in which certain data are given. You have to decide whether the data given in the statements are sufficient for answering the question. Using the data given in the statements, plus your knowledge of mathematics and everyday facts (such as the number of days in July or the meaning of the word counterclockwise), you must indicate whether—

A. Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient to answer the question asked.
B. Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient to answer the question asked.
C. BOTH statements (1) and (2) TOGETHER are sufficient to answer the question asked, but NEITHER statement ALONE is sufficient to answer the question asked.
D. EACH statement ALONE is sufficient to answer the question asked.
E. Statements (1) and (2) TOGETHER are NOT sufficient to answer the question asked, and additional data specific to the problem are needed.

Hope this helps.­
Moderators:
Math Expert
105416 posts
496 posts