GMAT Question of the Day - Daily to your Mailbox; hard ones only

 It is currently 19 Oct 2019, 20:34

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# In a certain deck of cards, each card has a positive integer

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics
Author Message
TAGS:

### Hide Tags

Intern
Joined: 27 Dec 2011
Posts: 5
In a certain deck of cards, each card has a positive integer  [#permalink]

### Show Tags

11 Apr 2012, 02:34
9
72
00:00

Difficulty:

45% (medium)

Question Stats:

62% (01:38) correct 38% (01:56) wrong based on 874 sessions

### HideShow timer Statistics

In a certain deck of cards, each card has a positive integer written on it, in a multiplication game a child draws a card and multiplies the integer on the card with the next large integer. If the each possible product is between 15 and 200, then the least and greatest integer on the card would be

A. 3 and 15
B. 3 and 20
C. 4 and 13
D. 4 and 14
E. 5 and 14
Math Expert
Joined: 02 Sep 2009
Posts: 58445
Re: In a certain deck of cards, each card has a positive integer  [#permalink]

### Show Tags

11 Apr 2012, 03:14
22
31
sapna44 wrote:
In a certain deck of cards, each card has a positive integer written on it, in a multiplication game a child draws a card and multiplies the integer on the card with the next large integer. If the each possible product is between 15 and 200, then the least and greatest integer on the card would be

A. 3 and 15
B. 3 and 20
C. 4 and 13
D. 4 and 14
E. 5 and 14

Given: 15<x(x+1)<200.

Now, it's better to test the answer choices here rather than to solve:

If x=3 then x(x+1)=12<15 --> discard A and B;

If x=4 then x(x+1)=20>15 --> so, the least value is 4, discard E. Test for the largest value: if x=14 then x(x+1)=14*15=210>200 --> discard D.

Else you could find that the greatest value is 13 and since only C offers it, then it must be correct.
_________________
Intern
Joined: 30 Apr 2010
Posts: 19
Re: In a certain deck of cards, each card has a positive integer  [#permalink]

### Show Tags

08 Mar 2013, 15:42
13
I found the wording a bit confusing, the child draws a card and multiplies it with the next large integer.

I didn't really get the idea that the card numbers were consecutive.
##### General Discussion
Intern
Joined: 16 Apr 2015
Posts: 1
Location: United States
GMAT 1: 480 Q31 V25
GPA: 3.9
WE: Consulting (Health Care)
Re: In a certain deck of cards, each card has a positive integer  [#permalink]

### Show Tags

16 Apr 2015, 15:56
1
The part that was confusing to me was the wording, "If each possible product is between 15 and 200..." I took that to mean it had to be 15 at the lowest and 200 at the highest. Since there aren't any perimeters that fit those integers, it burnt up my time and left me frustrated. Learned and moved forward though.
EMPOWERgmat Instructor
Status: GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Joined: 19 Dec 2014
Posts: 15287
Location: United States (CA)
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Re: In a certain deck of cards, each card has a positive integer  [#permalink]

### Show Tags

16 Apr 2015, 19:28
4
Hi All,

Since the answers to this question are numbers, I'm going to TEST THE ANSWERS.

We're told that, after drawing a card, you must multiply the number on the card by the next larger integer and end up with a number between 15 and 200. We're asked for the smallest and largest possible numbers on the cards.

IF the number was 3, then…
3(4) = 12, which is NOT between 15 and 200. Eliminate A and B.

IF the number was 4, then…
4(5) = 20, which IS between 15 and 200. Eliminate E.

Now, on to the biggest number:

IF the number was 13, then…
13(14) = 182
IF the number was 14, then…
14(15) = 210

So, 14 is TOO BIG.

GMAT assassins aren't born, they're made,
Rich
_________________
Contact Rich at: Rich.C@empowergmat.com

The Course Used By GMAT Club Moderators To Earn 750+

souvik101990 Score: 760 Q50 V42 ★★★★★
ENGRTOMBA2018 Score: 750 Q49 V44 ★★★★★
Veritas Prep GMAT Instructor
Joined: 16 Oct 2010
Posts: 9706
Location: Pune, India
Re: In a certain deck of cards, each card has a positive integer  [#permalink]

### Show Tags

17 Apr 2015, 01:38
4
Quote:
I found the wording a bit confusing, the child draws a card and multiplies it with the next large integer.

I didn't really get the idea that the card numbers were consecutive.

Agreed. I couldn't think of anything other the next consecutive integer and hence used that. Wasn't completely sure but the answer options made sense with this assumption.

Quote:
The part that was confusing to me was the wording, "If each possible product is between 15 and 200..." I took that to mean it had to be 15 at the lowest and 200 at the highest. Since there aren't any perimeters that fit those integers, it burnt up my time and left me frustrated. Learned and moved forward though.

Between could mean either - including the extremes or excluding the extremes. It is usually specified when you do need to know it. 15 cannot be represented as a product of two consecutive integers and hence you know that the extremes are not included. Hence giving this information here was no essential.

Another Method:
Look for the square root - 15 square root will be 3.something but 3*4 = 12 (which does not lie in 15 to 200). So 4 must be the smallest integer.
200 square root will be 14.something because 14^2 = 196. 14*15 will be more than 200 so the largest number must be 13.

_________________
Karishma
Veritas Prep GMAT Instructor

Learn more about how Veritas Prep can help you achieve a great GMAT score by checking out their GMAT Prep Options >
Manager
Joined: 18 Feb 2015
Posts: 82
Re: In a certain deck of cards, each card has a positive integer  [#permalink]

### Show Tags

24 Nov 2016, 10:57
3
Hi,

Im not sure what am I missing in the following logic.

As the question tells that the possible product is going to be between 15 and 200. The lowest pair will be 4 and 5 (4*5=20) and the largest pair is going to be 13 & 14 (13*14=182). Since the question asks " LEAST and GREATEST integers on the cards could be .." - I chose option D since - the least number will be 4 and the greatest 14. What am I missing?

Thanks!
Math Expert
Joined: 02 Sep 2009
Posts: 58445
Re: In a certain deck of cards, each card has a positive integer  [#permalink]

### Show Tags

24 Nov 2016, 23:51
1
HarveyKlaus wrote:
Hi,

Im not sure what am I missing in the following logic.

As the question tells that the possible product is going to be between 15 and 200. The lowest pair will be 4 and 5 (4*5=20) and the largest pair is going to be 13 & 14 (13*14=182). Since the question asks " LEAST and GREATEST integers on the cards could be .." - I chose option D since - the least number will be 4 and the greatest 14. What am I missing?

Thanks!

14 cannot be written on the card because in this case 14*(14+1) = 210 > 200.
_________________
Target Test Prep Representative
Status: Founder & CEO
Affiliations: Target Test Prep
Joined: 14 Oct 2015
Posts: 8109
Location: United States (CA)
Re: In a certain deck of cards, each card has a positive integer  [#permalink]

### Show Tags

01 Mar 2018, 18:31
1
sapna44 wrote:
In a certain deck of cards, each card has a positive integer written on it, in a multiplication game a child draws a card and multiplies the integer on the card with the next large integer. If the each possible product is between 15 and 200, then the least and greatest integer on the card would be

A. 3 and 15
B. 3 and 20
C. 4 and 13
D. 4 and 14
E. 5 and 14

Since the product is above 15, and since 3 x 4 = 12, we can eliminate answers A and B.

We also see that 4 must be the minimum integer on any of the cards since 4 x 5 = 20, which is the smallest product above 15. We can, therefore, eliminate answer choice E, and we are left to choose between answers C and D.

Let’s check the maximum value from answer choice C.

13 x 14 = 182

13 could be the maximum value. Let’s test answer choice D.

14 x 15 = 210

Since 210 is greater than 200, D is not correct.

_________________

# Scott Woodbury-Stewart

Founder and CEO

Scott@TargetTestPrep.com
122 Reviews

5-star rated online GMAT quant
self study course

See why Target Test Prep is the top rated GMAT quant course on GMAT Club. Read Our Reviews

If you find one of my posts helpful, please take a moment to click on the "Kudos" button.

Intern
Joined: 13 Jul 2017
Posts: 1
Re: In a certain deck of cards, each card has a positive integer  [#permalink]

### Show Tags

06 Mar 2018, 18:23
My first step was to divide 200/15 which gave me the greatest integer (13) and because there is only one option offering 13 I just went with option C... any comments??
Veritas Prep GMAT Instructor
Joined: 16 Oct 2010
Posts: 9706
Location: Pune, India
Re: In a certain deck of cards, each card has a positive integer  [#permalink]

### Show Tags

07 Mar 2018, 04:58
martin.lopez wrote:
My first step was to divide 200/15 which gave me the greatest integer (13) and because there is only one option offering 13 I just went with option C... any comments??

The logic is not sound. The question tells us that the product of the smallest integer with the next integer. Since 3*4 = 12 and 4*5 = 20, the smallest integer must be 4.
200 is the product of the largest integer with the next integer.
Taking a hint from the options, since 13*14 = 182 and 14*15 = 210, the largest number must be 13.
There is no logic to using 200/15

If instead of 200 we had 300,
300/15 would be 20
But the largest integer would be 16 (since 16*17 = 272)
_________________
Karishma
Veritas Prep GMAT Instructor

Learn more about how Veritas Prep can help you achieve a great GMAT score by checking out their GMAT Prep Options >
Manager
Joined: 16 May 2018
Posts: 84
Location: Hungary
Schools: Queen's MBA'20
Re: In a certain deck of cards, each card has a positive integer  [#permalink]

### Show Tags

28 Feb 2019, 03:58
Hi All,
Maybe i got a bit lucky here, but when i solved it. I assume that no card has a value of >13
and only option available was 4 and 13 which is the correct answer.
Am i completely wrong in my assumption ?
EMPOWERgmat Instructor
Status: GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Joined: 19 Dec 2014
Posts: 15287
Location: United States (CA)
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Re: In a certain deck of cards, each card has a positive integer  [#permalink]

### Show Tags

28 Feb 2019, 18:57
Hi hsn81960,

Can you go into a bit more detail about WHY you 'assumed' that no card had a value greater than 13 on it? Did you do any math to clarify your logic or were you just thinking about a 'standard' deck of playing cards (that include 13 cards of each suit)?

GMAT assassins aren't born, they're made,
Rich
_________________
Contact Rich at: Rich.C@empowergmat.com

The Course Used By GMAT Club Moderators To Earn 750+

souvik101990 Score: 760 Q50 V42 ★★★★★
ENGRTOMBA2018 Score: 750 Q49 V44 ★★★★★
Manager
Joined: 16 May 2018
Posts: 84
Location: Hungary
Schools: Queen's MBA'20
Re: In a certain deck of cards, each card has a positive integer  [#permalink]

### Show Tags

01 Mar 2019, 02:34
Hi Rich,
While i was trying to do the maths in my head. All of a sudden i realized that there arent more than 13 cards in each suit.
So i just thought its an easy question and i need to think through. So immediately picked an option that doesnt have a value more than 13.
Luckily it was the correct choice.
EMPOWERgmat Instructor
Status: GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Joined: 19 Dec 2014
Posts: 15287
Location: United States (CA)
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Re: In a certain deck of cards, each card has a positive integer  [#permalink]

### Show Tags

01 Mar 2019, 12:27
Hi hsn81960,

The prompt tells us NOTHING about the number of cards in the deck nor anything about "suits", so you ultimately did get 'lucky' on this question. As an aside, doing work "in your head" is the WORST way to approach a GMAT question (since you'll be far more likely to make a silly mistake - and those types of mistakes tend to cost Test Takers a LOT of points on Test Day).

GMAT assassins aren't born, they're made,
Rich
_________________
Contact Rich at: Rich.C@empowergmat.com

The Course Used By GMAT Club Moderators To Earn 750+

souvik101990 Score: 760 Q50 V42 ★★★★★
ENGRTOMBA2018 Score: 750 Q49 V44 ★★★★★
Intern
Joined: 01 Jul 2019
Posts: 9
Re: In a certain deck of cards, each card has a positive integer  [#permalink]

### Show Tags

23 Jul 2019, 10:42
1
I read the question as saying that the card drawn would be multiplied by the next large integer card. As I am looking through the answer choices I know this is not the proper reading of the question because if it was, the smallest card could be 1 (multiplied by the next largest card 15 in order to get a product in the 15-200 range). None of the answer choices have a number below 3, so I know the I must be reading the question incorrectly. I think this question serves as an example of how answer choices can help one figure out what the question is actually asking.
EMPOWERgmat Instructor
Status: GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Joined: 19 Dec 2014
Posts: 15287
Location: United States (CA)
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Re: In a certain deck of cards, each card has a positive integer  [#permalink]

### Show Tags

23 Jul 2019, 17:21
Hi barsellac,

You've discovered something really important about the GMAT - the 5 answer choices can often be quite useful in helping you to determine how to approach a prompt (and even whether you are interpreting the prompt correctly or not). In the Verbal section, the 5 answer choices to SCs can often help to define the specific grammar rules involved and how you can sometimes eliminate answers even after reading just part of the sentence. Continue to take advantage of all of these patterns and you'll find that hitting your Score Goal becomes far easier.

GMAT assassins aren't born, they're made,
Rich
_________________
Contact Rich at: Rich.C@empowergmat.com

The Course Used By GMAT Club Moderators To Earn 750+

souvik101990 Score: 760 Q50 V42 ★★★★★
ENGRTOMBA2018 Score: 750 Q49 V44 ★★★★★
Non-Human User
Joined: 09 Sep 2013
Posts: 13277
Re: In a certain deck of cards, each card has a positive integer  [#permalink]

### Show Tags

07 Oct 2019, 00:46
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
Re: In a certain deck of cards, each card has a positive integer   [#permalink] 07 Oct 2019, 00:46
Display posts from previous: Sort by

# In a certain deck of cards, each card has a positive integer

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics

 Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne