It is currently 19 Nov 2017, 23:36

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

In how many different ways can a group of 8 people be

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

1 KUDOS received
Senior Manager
Senior Manager
avatar
Status: D-Day is on February 10th. and I am not stressed
Affiliations: American Management association, American Association of financial accountants
Joined: 12 Apr 2011
Posts: 252

Kudos [?]: 370 [1], given: 52

Location: Kuwait
Schools: Columbia university
In how many different ways can a group of 8 people be [#permalink]

Show Tags

New post 12 Jan 2012, 07:59
1
This post received
KUDOS
15
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  75% (hard)

Question Stats:

46% (00:58) correct 54% (01:23) wrong based on 228 sessions

HideShow timer Statistics

In how many different ways can a group of 8 people be divided into 4 teams of 2 people each?

A. 90
B. 105
C. 168
D. 420
E. 2520
[Reveal] Spoiler: OA

_________________

Sky is the limit

Kudos [?]: 370 [1], given: 52

Expert Post
5 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 42257

Kudos [?]: 132742 [5], given: 12360

Re: In how many different ways [#permalink]

Show Tags

New post 12 Jan 2012, 08:06
5
This post received
KUDOS
Expert's post
12
This post was
BOOKMARKED
manalq8 wrote:
In how many different ways can a group of 8 people be divided into 4 teams of 2 people each?

90
105
168
420
2520


\(\frac{C^2_8*C^2_6*C^2_4*C^2_2}{4!}=105\), we are dividing by 4! (factorial of the # of teams) as the order of the teams does not matter. If 8 people are - 1, 2, 3, 4, 5, 6, 7, 8, then (1,2)(3,4)(5,6)(7,8) would be the same 4 teams as (5,6)(7,8)(1,2)(3,4), as we don't have team #1, team #2...

You can think about this in another way.
For the first person we can pick a pair in 7 ways;
For the second one in 5 ways (as two are already chosen);
For the third one in 3 ways (as 4 people are already chosen);
For the fourth one there is only one left.

So we have 7*5*3*1=105

Answer: B.

You can check similar problems:
probability-88685.html?hilit=different%20items%20divided%20equally
probability-85993.html?highlight=divide+groups
combination-55369.html#p690842
sub-committee-86346.html?highlight=divide+groups


There is also direct formula for this:

1. The number of ways in which \(mn\) different items can be divided equally into \(m\) groups, each containing \(n\) objects and the order of the groups is not important is \(\frac{(mn)!}{(n!)^m*m!}\).

2. The number of ways in which \(mn\) different items can be divided equally into \(m\) groups, each containing \(n\) objects and the order of the groups is important is \(\frac{(mn)!}{(n!)^m}\)

Hope it helps.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 132742 [5], given: 12360

Manager
Manager
avatar
Joined: 06 Jun 2010
Posts: 158

Kudos [?]: 20 [0], given: 151

Re: In how many different ways can a group of 8 people be [#permalink]

Show Tags

New post 01 Mar 2013, 07:07
For the first person we can pick a pair in 7 ways;
For the second one in 5 ways (as two are already chosen);
For the third one in 3 ways (as 4 people are already chosen);
For the fourth one there is only one left.

Hi Bunuel,

Can u tell y have u considered 7 ways above?

Also,in the previous method im not clear why we need to divide by 4!.
Is it like say for eg:how many ways can we arrange the word AEEB so we need to consider 4!/2! since EE is repeated?

Kudos [?]: 20 [0], given: 151

Manager
Manager
User avatar
Joined: 24 Sep 2012
Posts: 90

Kudos [?]: 171 [0], given: 3

Location: United States
Concentration: Entrepreneurship, International Business
GMAT 1: 730 Q50 V39
GPA: 3.2
WE: Education (Education)
Re: In how many different ways can a group of 8 people be [#permalink]

Show Tags

New post 01 Mar 2013, 21:09
I might be able to help you with this one.

Suppose you were choosing a person to pair with person 1. You could form the following pairs
(1,2),(1,3)(1,4),(1,5),(1,6),(1,7)(1,8)
That's a total of 7 choices possible. Hence, one needs to choose 7.

Hope this helps!

shreerajp99 wrote:
For the first person we can pick a pair in 7 ways;
For the second one in 5 ways (as two are already chosen);
For the third one in 3 ways (as 4 people are already chosen);
For the fourth one there is only one left.

Hi Bunuel,

Can u tell y have u considered 7 ways above?

Also,in the previous method im not clear why we need to divide by 4!.
Is it like say for eg:how many ways can we arrange the word AEEB so we need to consider 4!/2! since EE is repeated?

Kudos [?]: 171 [0], given: 3

1 KUDOS received
Senior Manager
Senior Manager
User avatar
Joined: 23 Mar 2011
Posts: 461

Kudos [?]: 282 [1], given: 59

Location: India
GPA: 2.5
WE: Operations (Hospitality and Tourism)
Re: In how many different ways can a group of 8 people be [#permalink]

Show Tags

New post 01 Mar 2013, 22:05
1
This post received
KUDOS
shreerajp99 wrote:
For the first person we can pick a pair in 7 ways;
For the second one in 5 ways (as two are already chosen);
For the third one in 3 ways (as 4 people are already chosen);
For the fourth one there is only one left.

Hi Bunuel,

Can u tell y have u considered 7 ways above?

Also,in the previous method im not clear why we need to divide by 4!.
Is it like say for eg:how many ways can we arrange the word AEEB so we need to consider 4!/2! since EE is repeated?


Let me try explain what I thought:
Person 1 to pair with someone - have 7 choices (out of 8)
Person 2 to pair with somone - have 5 choices (out of remaining 6 people, note the 2nd person is also included in remaining 6)
.......Likewise

Divide by 4!, you are close to correct, it is to avoid repeats of similar groups. Since order of the the chosen groups does not matter here (Person 1, Person 2) is same as (Person 2, Person 1) - that means as per the formula we have number of groups which includes these repeats, to negate those we divide by 4! to get a realistic number with no such repeats

I tried, hope it is clear.....

Thanks
_________________

"When the going gets tough, the tough gets going!"

Bring ON SOME KUDOS MATES+++



-----------------------------
Quant Notes consolidated: http://gmatclub.com/forum/consolodited-quant-guides-of-forum-most-helpful-in-preps-151067.html#p1217652

My GMAT journey begins: http://gmatclub.com/forum/my-gmat-journey-begins-122251.html

All about Richard Ivey: http://gmatclub.com/forum/all-about-richard-ivey-148594.html#p1190518

Kudos [?]: 282 [1], given: 59

Manager
Manager
User avatar
B
Joined: 07 Feb 2011
Posts: 105

Kudos [?]: 64 [0], given: 45

Re: In how many different ways can a group of 8 people be [#permalink]

Show Tags

New post 03 Mar 2013, 06:31
Hmm Bunuel something I did quickly, and forgot the context to do this in (this doesn't happen as frequently) was to select by team? How would I approach the problem then. IE instad of 8C2, I started with 4C1 and started to proceed from there, with the hopes of multiplying by 2! to account for the different arrangements we could have within each team (but not by 4! to account for the order of these different teams)


Why would 4C1 not be appropriate in this case? Is it because those 4 teams aren't set beforehand?

I am messing this up conceptually and want to correct this mistake
_________________

We appreciate your kudos'

Kudos [?]: 64 [0], given: 45

Expert Post
2 KUDOS received
Veritas Prep GMAT Instructor
User avatar
G
Joined: 16 Oct 2010
Posts: 7738

Kudos [?]: 17808 [2], given: 235

Location: Pune, India
Re: In how many different ways can a group of 8 people be [#permalink]

Show Tags

New post 04 Mar 2013, 00:02
2
This post received
KUDOS
Expert's post
manimgoindowndown wrote:
Hmm Bunuel something I did quickly, and forgot the context to do this in (this doesn't happen as frequently) was to select by team? How would I approach the problem then. IE instad of 8C2, I started with 4C1 and started to proceed from there, with the hopes of multiplying by 2! to account for the different arrangements we could have within each team (but not by 4! to account for the order of these different teams)


Why would 4C1 not be appropriate in this case? Is it because those 4 teams aren't set beforehand?

I am messing this up conceptually and want to correct this mistake



Check out this post: http://www.veritasprep.com/blog/2011/11 ... ke-groups/

It discusses two different questions:
1. Distributing 12 different chocolates equally among 4 boys (similar to splitting 8 people in 4 distinct teams with 2 people each - your question)
2. Distributing 12 different chocolates equally in 4 stacks (similar to splitting 8 people in 4 teams of 2 people each - the original question)

See if grouping makes sense thereafter.
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Get started with Veritas Prep GMAT On Demand for $199

Veritas Prep Reviews

Kudos [?]: 17808 [2], given: 235

Manager
Manager
User avatar
B
Joined: 07 Feb 2011
Posts: 105

Kudos [?]: 64 [0], given: 45

Re: In how many different ways can a group of 8 people be [#permalink]

Show Tags

New post 05 Mar 2013, 19:02
VeritasPrepKarishma wrote:
manimgoindowndown wrote:
Hmm Bunuel something I did quickly, and forgot the context to do this in (this doesn't happen as frequently) was to select by team? How would I approach the problem then. IE instad of 8C2, I started with 4C1 and started to proceed from there, with the hopes of multiplying by 2! to account for the different arrangements we could have within each team (but not by 4! to account for the order of these different teams)


Why would 4C1 not be appropriate in this case? Is it because those 4 teams aren't set beforehand?

I am messing this up conceptually and want to correct this mistake



Check out this post: http://www.veritasprep.com/blog/2011/11 ... ke-groups/

It discusses two different questions:
1. Distributing 12 different chocolates equally among 4 boys (similar to splitting 8 people in 4 distinct teams with 2 people each - your question)
2. Distributing 12 different chocolates equally in 4 stacks (similar to splitting 8 people in 4 teams of 2 people each - the original question)

See if grouping makes sense thereafter.



That example and wording was extremely confusing and frustrating. I am still trying to see what language prompted the difference in permutation vs combination.

Maybe my brain has been fried this week (lots of pracatice, one full length CAT), but the big thing in this problem is you DO NOT account for order TWICE
the 4! is for the team
and the 2! is within every single combination for each pair
_________________

We appreciate your kudos'

Kudos [?]: 64 [0], given: 45

Expert Post
Veritas Prep GMAT Instructor
User avatar
G
Joined: 16 Oct 2010
Posts: 7738

Kudos [?]: 17808 [0], given: 235

Location: Pune, India
Re: In how many different ways can a group of 8 people be [#permalink]

Show Tags

New post 05 Mar 2013, 20:09
manimgoindowndown wrote:
That example and wording was extremely confusing and frustrating. I am still trying to see what language prompted the difference in permutation vs combination.

Maybe my brain has been fried this week (lots of pracatice, one full length CAT), but the big thing in this problem is you DO NOT account for order TWICE
the 4! is for the team
and the 2! is within every single combination for each pair


Yes, because in this question, the groups are not distinct. You have to split 8 people in 4 groups.
You can split them like this: (A, B), (C, D), (E, F), (G, H)
or like this: (G, H), (A, B), (C, D), (E, F)
they are the same split. They are not assigned to group1, group2, group3, group4.
Say the total number of ways we get = N

Now, if we change the question and say that we have 8 people and we need to divide them into 4 teams: Team 1, Team 2, Team 3 and Team 4

Then, one split is this: Team 1 = (A, B); Team 2 = (C, D), Team 3 = (E, F), Team 4 = (G, H)
and another split is: Team 1 = (G, H), Team 2 = (A, B); Team 3 = (C, D), Team 4 = (E, F)

These two cases were the same in our original question but if the teams/groups are distinct, the two cases are distinct. Now, the total number of ways = N*4!
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Get started with Veritas Prep GMAT On Demand for $199

Veritas Prep Reviews

Kudos [?]: 17808 [0], given: 235

Non-Human User
User avatar
Joined: 09 Sep 2013
Posts: 15643

Kudos [?]: 283 [0], given: 0

Premium Member
Re: In how many different ways can a group of 8 people be [#permalink]

Show Tags

New post 22 Jun 2014, 09:27
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

GMAT Books | GMAT Club Tests | Best Prices on GMAT Courses | GMAT Mobile App | Math Resources | Verbal Resources

Kudos [?]: 283 [0], given: 0

1 KUDOS received
Manager
Manager
avatar
B
Joined: 23 May 2013
Posts: 189

Kudos [?]: 114 [1], given: 42

Location: United States
Concentration: Technology, Healthcare
Schools: Stanford '19 (M)
GMAT 1: 760 Q49 V45
GPA: 3.5
GMAT ToolKit User
In how many different ways can a group of 8 people be [#permalink]

Show Tags

New post 23 Jun 2014, 11:56
1
This post received
KUDOS
manalq8 wrote:
In how many different ways can a group of 8 people be divided into 4 teams of 2 people each?

A. 90
B. 105
C. 168
D. 420
E. 2520



Just think about this as you would any other combination problem.

You need to choose 4 groups of 2 from 8 people: That's \(\frac{8!}{2!2!2!2!}\), then divided by \(4!\), since any ordering of these 4 groups is the same.

Total = \(\frac{8!}{2!2!2!2!4!} = \frac{8!}{8*2*4!} = \frac{7!}{2*4!} = \frac{7*6*5*4*3*2}{4*3*2*2} = \frac{7*6*5}{2} = 35*3 = 105.\)

Answer: B

Kudos [?]: 114 [1], given: 42

Non-Human User
User avatar
Joined: 09 Sep 2013
Posts: 15643

Kudos [?]: 283 [0], given: 0

Premium Member
Re: In how many different ways can a group of 8 people be [#permalink]

Show Tags

New post 30 Nov 2015, 06:12
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

GMAT Books | GMAT Club Tests | Best Prices on GMAT Courses | GMAT Mobile App | Math Resources | Verbal Resources

Kudos [?]: 283 [0], given: 0

Expert Post
SVP
SVP
User avatar
G
Joined: 08 Jul 2010
Posts: 1847

Kudos [?]: 2343 [0], given: 51

Location: India
GMAT: INSIGHT
WE: Education (Education)
Reviews Badge
Re: In how many different ways can a group of 8 people be [#permalink]

Show Tags

New post 17 Jul 2017, 04:54
manalq8 wrote:
In how many different ways can a group of 8 people be divided into 4 teams of 2 people each?

A. 90
B. 105
C. 168
D. 420
E. 2520


Let's select the 4 groups of 2 individuals each


8C2 * 6C2 * 4C2 * 2C2

But wait... There is some problem...

Let 8 individuals are
A B C D E F G H

Case 1: selected 4 groups of 2 are respectively

A&B C&D E&F G&H

i.e. A&B us first group, C&D is second group etc

Case 2: selected 4 groups of 2 are respectively

C&D A&B G&H E&F respectively

So case 1 and 2 are the same except that order of the groups has been accounted for

The arrangements of 4 groups can be done in 4! Which needs to be excluded from calculation

Hence divide the result by 4!

So final result = 8C2 * 6C2 * 4C2 * 2C2 / 4! = 105

Answer Option B

Hope this helps!!!
_________________

Prosper!!!
GMATinsight
Bhoopendra Singh and Dr.Sushma Jha
e-mail: info@GMATinsight.com I Call us : +91-9999687183 / 9891333772
Online One-on-One Skype based classes and Classroom Coaching in South and West Delhi
http://www.GMATinsight.com/testimonials.html

22 ONLINE FREE (FULL LENGTH) GMAT CAT (PRACTICE TESTS) LINK COLLECTION

Kudos [?]: 2343 [0], given: 51

Intern
Intern
avatar
B
Joined: 13 May 2017
Posts: 3

Kudos [?]: 0 [0], given: 110

Re: In how many different ways can a group of 8 people be [#permalink]

Show Tags

New post 30 Aug 2017, 07:07
Hi all,

here you wants to divide 8 people in group of 4 teams in 2 members .
So you can do these directly

8!/2!*2!*2!*2!*4!

so in these in the numerator denotes the total number of people and four times 2! denotes the four group and 4! denotes as the all the group has same number.

Kudos [?]: 0 [0], given: 110

Intern
Intern
avatar
B
Joined: 26 Dec 2014
Posts: 9

Kudos [?]: [0], given: 8

Re: In how many different ways can a group of 8 people be [#permalink]

Show Tags

New post 30 Aug 2017, 07:22
Bunuel wrote:
manalq8 wrote:
In how many different ways can a group of 8 people be divided into 4 teams of 2 people each?

90
105
168
420
2520


\(\frac{C^2_8*C^2_6*C^2_4*C^2_2}{4!}=105\), we are dividing by 4! (factorial of the # of teams) as the order of the teams does not matter. If 8 people are - 1, 2, 3, 4, 5, 6, 7, 8, then (1,2)(3,4)(5,6)(7,8) would be the same 4 teams as (5,6)(7,8)(1,2)(3,4), as we don't have team #1, team #2...

You can think about this in another way.
For the first person we can pick a pair in 7 ways;
For the second one in 5 ways (as two are already chosen);
For the third one in 3 ways (as 4 people are already chosen);
For the fourth one there is only one left.

So we have 7*5*3*1=105

Answer: B.

You can check similar problems:
http://gmatclub.com/forum/probability-8 ... %20equally
http://gmatclub.com/forum/probability-8 ... ide+groups
http://gmatclub.com/forum/combination-5 ... ml#p690842
http://gmatclub.com/forum/sub-committee ... ide+groups


There is also direct formula for this:

1. The number of ways in which \(mn\) different items can be divided equally into \(m\) groups, each containing \(n\) objects and the order of the groups is not important is \(\frac{(mn)!}{(n!)^m*m!}\).

2. The number of ways in which \(mn\) different items can be divided equally into \(m\) groups, each containing \(n\) objects and the order of the groups is important is \(\frac{(mn)!}{(n!)^m}\)

Hope it helps.



How did you use the formula? I did not get the answer using formula.

Kudos [?]: [0], given: 8

Expert Post
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 42257

Kudos [?]: 132742 [0], given: 12360

In how many different ways can a group of 8 people be [#permalink]

Show Tags

New post 30 Aug 2017, 10:45
Expert's post
1
This post was
BOOKMARKED
gayatriv21 wrote:
Bunuel wrote:
manalq8 wrote:
In how many different ways can a group of 8 people be divided into 4 teams of 2 people each?

90
105
168
420
2520


\(\frac{C^2_8*C^2_6*C^2_4*C^2_2}{4!}=105\), we are dividing by 4! (factorial of the # of teams) as the order of the teams does not matter. If 8 people are - 1, 2, 3, 4, 5, 6, 7, 8, then (1,2)(3,4)(5,6)(7,8) would be the same 4 teams as (5,6)(7,8)(1,2)(3,4), as we don't have team #1, team #2...

You can think about this in another way.
For the first person we can pick a pair in 7 ways;
For the second one in 5 ways (as two are already chosen);
For the third one in 3 ways (as 4 people are already chosen);
For the fourth one there is only one left.

So we have 7*5*3*1=105

Answer: B.

You can check similar problems:
http://gmatclub.com/forum/probability-8 ... %20equally
http://gmatclub.com/forum/probability-8 ... ide+groups
http://gmatclub.com/forum/combination-5 ... ml#p690842
http://gmatclub.com/forum/sub-committee ... ide+groups


There is also direct formula for this:

1. The number of ways in which \(mn\) different items can be divided equally into \(m\) groups, each containing \(n\) objects and the order of the groups is not important is \(\frac{(mn)!}{(n!)^m*m!}\).

2. The number of ways in which \(mn\) different items can be divided equally into \(m\) groups, each containing \(n\) objects and the order of the groups is important is \(\frac{(mn)!}{(n!)^m}\)

Hope it helps.



How did you use the formula? I did not get the answer using formula.


We are dividing mn = 8 people into m = 4 teams of n = 2 people each.

Use the first formula, sine the order does not matter: \(\frac{(mn)!}{(n!)^m*m!}=\frac{8!}{(2!)^4*4!}=105\).

P.S. You don;t really to memorize this formula for the GMAT.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 132742 [0], given: 12360

In how many different ways can a group of 8 people be   [#permalink] 30 Aug 2017, 10:45
Display posts from previous: Sort by

In how many different ways can a group of 8 people be

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.