Last visit was: 15 Jul 2025, 06:34 It is currently 15 Jul 2025, 06:34
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
ronr34
Joined: 08 Apr 2012
Last visit: 10 Oct 2014
Posts: 250
Own Kudos:
248
 [56]
Given Kudos: 58
Posts: 250
Kudos: 248
 [56]
12
Kudos
Add Kudos
44
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 14 Jul 2025
Posts: 102,576
Own Kudos:
Given Kudos: 98,190
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 102,576
Kudos: 741,553
 [32]
17
Kudos
Add Kudos
15
Bookmarks
Bookmark this Post
avatar
PareshGmat
Joined: 27 Dec 2012
Last visit: 10 Jul 2016
Posts: 1,538
Own Kudos:
7,894
 [9]
Given Kudos: 193
Status:The Best Or Nothing
Location: India
Concentration: General Management, Technology
WE:Information Technology (Computer Software)
Posts: 1,538
Kudos: 7,894
 [9]
6
Kudos
Add Kudos
3
Bookmarks
Bookmark this Post
General Discussion
avatar
HaseebR
Joined: 22 Nov 2013
Last visit: 01 May 2018
Posts: 1
Own Kudos:
1
 [1]
Posts: 1
Kudos: 1
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Area of the triangle is 1/2*B*H = 1/2*AB*AC

Squaring on Both Sides

(AB+AC)^2 = AB^2 + AC^2 + 2AB.AC = 225

AB^2+AC^2 is 13^2

So on solving the equation we get

2AB.AC=56

1/2AB.AC=14

EDIT : Oh damn Bunuel beat me to it
User avatar
AccipiterQ
Joined: 26 Sep 2013
Last visit: 03 Sep 2020
Posts: 146
Own Kudos:
695
 [1]
Given Kudos: 40
Concentration: Finance, Economics
GMAT 1: 670 Q39 V41
GMAT 2: 730 Q49 V41
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
ronr34
In right triangle ABC, BC is the hypotenuse. If BC is 13 and AB + AC = 15, what is the area of the triangle?

A. 2√7
B. 2√14
C. 14
D. 28
E. 56


I have a question regarding this.
If Bc is the hypotenuse, and the triangle is a right triangle,
that means that the other two side must be 5:12:13....
How can it be stated that the other sides sum to be 15?

Please explain.
thanks

You assume with no ground for it that the lengths of the sides are integers. Knowing that hypotenuse equals to 13 DOES NOT mean that the sides of the right triangle necessarily must be in the ratio of Pythagorean triple - 5:12:13. Or in other words: if \(a^2+b^2=13^2\) DOES NOT mean that \(a=5\) and \(b=12\), certainly this is one of the possibilities but definitely not the only one. In fact \(a^2+b^2=13^2\) has infinitely many solutions for \(a\) and \(b\) and only one of them is \(a=5\) and \(b=12\).

For example: \(a=1\) and \(b=\sqrt{168}\) or \(a=2\) and \(b=\sqrt{165}\) ...

Hope it's clear.

BACK TO THE ORIGINAL QUESTION:
In right triangle ABC, BC is the hypotenuse. If BC is 13 and AB + AC = 15, what is the area of the triangle?
A. 2√7
B. 2√14
C. 14
D. 28
E. 56

Since ABC is a right triangle and BC is hypotenuse then the area is \(\frac{1}{2}*AB*AC\).

\(AB + AC = 15\) --> square it: \(AB^2 + 2*AB*AC + AC^2=225\).

Also, since BC is the hypotenuse, then \(AB^2 + AC^2=BC^2=169\).

Substitute the second equation in the first: \(169+ 2*AB*AC=225\) --> \(2*AB*AC=56\) --> \(AB*AC=28\).

The area = \(\frac{1}{2}*AB*AC=14\).

Answer: C.


How the hell did you know to square that? I tried using the pythag theorem for A^2+B^2=13^2, and since A+B=15, since A=15-B, subbing that back into the pythag theorem. Ended up with b^2-15b+28...which only has ugly solutions.
User avatar
dreambig1990
Joined: 27 Feb 2013
Last visit: 16 Aug 2017
Posts: 40
Own Kudos:
Given Kudos: 77
Posts: 40
Kudos: 6
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Just try to remember the relationship between area of a triangle with its sides involves The Pythagorean (or Pythagoras') Theorem a^2+b^2=c^2 and the equation (a+B)^2= a^2 + b^2 + 2ab---- in MGMAT series, they mention about this relationship too. GOOD LUCK
User avatar
WholeLottaLove
Joined: 13 May 2013
Last visit: 13 Jan 2014
Posts: 305
Own Kudos:
Given Kudos: 134
Posts: 305
Kudos: 616
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
ronr34
In right triangle ABC, BC is the hypotenuse. If BC is 13 and AB + AC = 15, what is the area of the triangle?

A. 2√7
B. 2√14
C. 14
D. 28
E. 56


I have a question regarding this.
If Bc is the hypotenuse, and the triangle is a right triangle,
that means that the other two side must be 5:12:13....
How can it be stated that the other sides sum to be 15?

Please explain.
thanks

You assume with no ground for it that the lengths of the sides are integers. Knowing that hypotenuse equals to 13 DOES NOT mean that the sides of the right triangle necessarily must be in the ratio of Pythagorean triple - 5:12:13. Or in other words: if \(a^2+b^2=13^2\) DOES NOT mean that \(a=5\) and \(b=12\), certainly this is one of the possibilities but definitely not the only one. In fact \(a^2+b^2=13^2\) has infinitely many solutions for \(a\) and \(b\) and only one of them is \(a=5\) and \(b=12\).

For example: \(a=1\) and \(b=\sqrt{168}\) or \(a=2\) and \(b=\sqrt{165}\) ...

Hope it's clear.

BACK TO THE ORIGINAL QUESTION:
In right triangle ABC, BC is the hypotenuse. If BC is 13 and AB + AC = 15, what is the area of the triangle?
A. 2√7
B. 2√14
C. 14
D. 28
E. 56

Since ABC is a right triangle and BC is hypotenuse then the area is \(\frac{1}{2}*AB*AC\).

\(AB + AC = 15\) --> square it: \(AB^2 + 2*AB*AC + AC^2=225\).

Also, since BC is the hypotenuse, then \(AB^2 + AC^2=BC^2=169\).

Substitute the second equation in the first: \(169+ 2*AB*AC=225\) --> \(2*AB*AC=56\) --> \(AB*AC=28\).

The area = \(\frac{1}{2}*AB*AC=14\).

Answer: C.

That is exactly what I did and it made sense right up to the last part.

We know that x+y = 15, we also know that x*y=28. There are only a few possibilities for what x and y could be:

x=1 y=28 (which we can rule out right off the bat)
x=2 y=14
x=4 y=7

None of which add up to 15. I see how you arrived at the answer: x*y (i.e. the base times the height) = 28 so you multiply by 1/2 to get the area of a triangle but shouldn't one of those sets of x, y also = 15?
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 14 Jul 2025
Posts: 102,576
Own Kudos:
Given Kudos: 98,190
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 102,576
Kudos: 741,553
Kudos
Add Kudos
Bookmarks
Bookmark this Post
WholeLottaLove
Bunuel
ronr34
In right triangle ABC, BC is the hypotenuse. If BC is 13 and AB + AC = 15, what is the area of the triangle?

A. 2√7
B. 2√14
C. 14
D. 28
E. 56


I have a question regarding this.
If Bc is the hypotenuse, and the triangle is a right triangle,
that means that the other two side must be 5:12:13....
How can it be stated that the other sides sum to be 15?

Please explain.
thanks

You assume with no ground for it that the lengths of the sides are integers. Knowing that hypotenuse equals to 13 DOES NOT mean that the sides of the right triangle necessarily must be in the ratio of Pythagorean triple - 5:12:13. Or in other words: if \(a^2+b^2=13^2\) DOES NOT mean that \(a=5\) and \(b=12\), certainly this is one of the possibilities but definitely not the only one. In fact \(a^2+b^2=13^2\) has infinitely many solutions for \(a\) and \(b\) and only one of them is \(a=5\) and \(b=12\).

For example: \(a=1\) and \(b=\sqrt{168}\) or \(a=2\) and \(b=\sqrt{165}\) ...

Hope it's clear.

BACK TO THE ORIGINAL QUESTION:
In right triangle ABC, BC is the hypotenuse. If BC is 13 and AB + AC = 15, what is the area of the triangle?
A. 2√7
B. 2√14
C. 14
D. 28
E. 56

Since ABC is a right triangle and BC is hypotenuse then the area is \(\frac{1}{2}*AB*AC\).

\(AB + AC = 15\) --> square it: \(AB^2 + 2*AB*AC + AC^2=225\).

Also, since BC is the hypotenuse, then \(AB^2 + AC^2=BC^2=169\).

Substitute the second equation in the first: \(169+ 2*AB*AC=225\) --> \(2*AB*AC=56\) --> \(AB*AC=28\).

The area = \(\frac{1}{2}*AB*AC=14\).

Answer: C.

That is exactly what I did and it made sense right up to the last part.

We know that x+y = 15, we also know that x*y=28. There are only a few possibilities for what x and y could be:

x=1 y=28 (which we can rule out right off the bat)
x=2 y=14
x=4 y=7

None of which add up to 15. I see how you arrived at the answer: x*y (i.e. the base times the height) = 28 so you multiply by 1/2 to get the area of a triangle but shouldn't one of those sets of x, y also = 15?

Why do you assume that the lengths of the sides are integers?
User avatar
WholeLottaLove
Joined: 13 May 2013
Last visit: 13 Jan 2014
Posts: 305
Own Kudos:
Given Kudos: 134
Posts: 305
Kudos: 616
Kudos
Add Kudos
Bookmarks
Bookmark this Post
That's a good point - all that is relevant is that it is a right angle and we know that the two leg lengths, whatever they are individually, multiply to 14.
User avatar
dreambig1990
Joined: 27 Feb 2013
Last visit: 16 Aug 2017
Posts: 40
Own Kudos:
Given Kudos: 77
Posts: 40
Kudos: 6
Kudos
Add Kudos
Bookmarks
Bookmark this Post
WholeLottaLove
That's a good point - all that is relevant is that it is a right angle and we know that the two leg lengths, whatever they are individually, multiply to 14.



Also if you want to go from : We know that x+y = 15, we also know that \(x*y=28\)--->>>
\(y=28/x\)
\(x+28/x= 15\)
\(x^2-15x+28=0\)
\(x1= (15+\sqrt{113} )/2\) or
\(x2=(15-\sqrt{113} )/2\)
So\(Y1=(15-\sqrt{113} )/2\)
\(Y2=(15-\sqrt{113} )/2\)

--NOTICE that the results is not integers or multiply to 14 or st
So X1, Y1 and X2, Y2 just switch with each other so it's very reasonable coz' no assumption of which one is greater.
And \(X1.Y1/2=X2.Y2/2= 28/2=14\).

Hope it help!!
avatar
meenanke
Joined: 26 Mar 2014
Last visit: 08 Sep 2015
Posts: 4
Own Kudos:
Given Kudos: 4
Posts: 4
Kudos: 5
Kudos
Add Kudos
Bookmarks
Bookmark this Post
AccipiterQ
dreambig1990
Just try to remember the relationship between area of a triangle with its sides involves The Pythagorean (or Pythagoras') Theorem a^2+b^2=c^2 and the equation (a+B)^2= a^2 + b^2 + 2ab---- in MGMAT series, they mention about this relationship too. GOOD LUCK

ah ok, thanks! I appreciate it

Would make 1 small note to "remember the relationship between the area of a RIGHT triangle with its sides involves the PT a^2+b^2=c^2 and the equation (a+b)^2=a^2+b^2" ... this relationship won't help you much in problems involving non-right triangles
User avatar
jasimuddin
Joined: 16 Oct 2012
Last visit: 02 Nov 2016
Posts: 34
Own Kudos:
Given Kudos: 51
Status:My heart can feel, my brain can grasp, I'm indomitable.
Affiliations: Educator
Location: Bangladesh
WE:Social Work (Education)
Posts: 34
Kudos: 26
Kudos
Add Kudos
Bookmarks
Bookmark this Post
x^2+ (15-x)^2=13^2
x^2-15x+28=13^2
product of two roots, AB.AC=28
Area=14
avatar
ft029
Joined: 31 Oct 2015
Last visit: 31 Oct 2015
Posts: 1
Own Kudos:
1
 [1]
Posts: 1
Kudos: 1
 [1]
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
GUYS YOU DO NOT NEED TO SOLVE FOR THE SIDE LENGTHS OF THE TRIANGLE!!!

The first reply illustrated this perfectly.

All right, so let the two legs be "a" and "b". The area is ab/2. We also know that a^2+b^2=13^2, or 169.

Since a + b = 15, you can square this equation and it will stay the same: a^2+b^2+2ab = 225 (this is called "FOIL")

a^2+b^2 is known to be 169, so substitute that in to get 169+2ab=225, so 2ab=56.

We want ab/2. Divide 2ab=56 by 4 on both sides to get ab/2 = 14, which is the answer. Pick C.
User avatar
Nunuboy1994
Joined: 12 Nov 2016
Last visit: 24 Apr 2019
Posts: 559
Own Kudos:
Given Kudos: 167
Location: United States
Schools: Yale '18
GMAT 1: 650 Q43 V37
GRE 1: Q157 V158
GPA: 2.66
Schools: Yale '18
GMAT 1: 650 Q43 V37
GRE 1: Q157 V158
Posts: 559
Kudos: 122
Kudos
Add Kudos
Bookmarks
Bookmark this Post
I don't understand how 169 gets plugged in as (AB)^2? Help pls
User avatar
Nunuboy1994
Joined: 12 Nov 2016
Last visit: 24 Apr 2019
Posts: 559
Own Kudos:
Given Kudos: 167
Location: United States
Schools: Yale '18
GMAT 1: 650 Q43 V37
GRE 1: Q157 V158
GPA: 2.66
Schools: Yale '18
GMAT 1: 650 Q43 V37
GRE 1: Q157 V158
Posts: 559
Kudos: 122
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Ok this problem is beginning to become more clear- but kudos if someone can explain further how we knew/ why to square AB + BC
User avatar
Nunuboy1994
Joined: 12 Nov 2016
Last visit: 24 Apr 2019
Posts: 559
Own Kudos:
Given Kudos: 167
Location: United States
Schools: Yale '18
GMAT 1: 650 Q43 V37
GRE 1: Q157 V158
GPA: 2.66
Schools: Yale '18
GMAT 1: 650 Q43 V37
GRE 1: Q157 V158
Posts: 559
Kudos: 122
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
ronr34
In right triangle ABC, BC is the hypotenuse. If BC is 13 and AB + AC = 15, what is the area of the triangle?

A. 2√7
B. 2√14
C. 14
D. 28
E. 56


I have a question regarding this.
If Bc is the hypotenuse, and the triangle is a right triangle,
that means that the other two side must be 5:12:13....
How can it be stated that the other sides sum to be 15?

Please explain.
thanks

You assume with no ground for it that the lengths of the sides are integers. Knowing that hypotenuse equals to 13 DOES NOT mean that the sides of the right triangle necessarily must be in the ratio of Pythagorean triple - 5:12:13. Or in other words: if \(a^2+b^2=13^2\) DOES NOT mean that \(a=5\) and \(b=12\), certainly this is one of the possibilities but definitely not the only one. In fact \(a^2+b^2=13^2\) has infinitely many solutions for \(a\) and \(b\) and only one of them is \(a=5\) and \(b=12\).

For example: \(a=1\) and \(b=\sqrt{168}\) or \(a=2\) and \(b=\sqrt{165}\) ...

Hope it's clear.

BACK TO THE ORIGINAL QUESTION:
In right triangle ABC, BC is the hypotenuse. If BC is 13 and AB + AC = 15, what is the area of the triangle?
A. 2√7
B. 2√14
C. 14
D. 28
E. 56

Since ABC is a right triangle and BC is hypotenuse then the area is \(\frac{1}{2}*AB*AC\).

\(AB + AC = 15\) --> square it: \(AB^2 + 2*AB*AC + AC^2=225\).

Also, since BC is the hypotenuse, then \(AB^2 + AC^2=BC^2=169\).

Substitute the second equation in the first: \(169+ 2*AB*AC=225\) --> \(2*AB*AC=56\) --> \(AB*AC=28\).

The area = \(\frac{1}{2}*AB*AC=14\).

Answer: C.

I think the difficulty in this question lies in the fact that you cannot use the Pythagorean Theorem to solve for sides AB and BA, or alternatively the individual values of X and Y. The objective of this question, as posted, is to solve for the product of X and Y. It isn't necessary to know the individual values of X and Y in order to solve the question- the area of right triangle is

Area = (1/2) Base * H

Yet in this problem the product of sides AB and BA, or again X and Y, can be substituted for (Base * Height).

The only thing I'd like to know about this problem is, well, what are the values of sides AB and BA? The factors of 28 are 1, 2, 4 , 7 , 14, and 28
28, 14, 2 and 1 are out because 28 and 14 are larger numbers then the hypotenuse- though
7^2 + 4^2 does not equal 13^2?
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 14 Jul 2025
Posts: 102,576
Own Kudos:
Given Kudos: 98,190
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 102,576
Kudos: 741,553
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Nunuboy1994
Bunuel
ronr34
In right triangle ABC, BC is the hypotenuse. If BC is 13 and AB + AC = 15, what is the area of the triangle?

A. 2√7
B. 2√14
C. 14
D. 28
E. 56


I have a question regarding this.
If Bc is the hypotenuse, and the triangle is a right triangle,
that means that the other two side must be 5:12:13....
How can it be stated that the other sides sum to be 15?

Please explain.
thanks

You assume with no ground for it that the lengths of the sides are integers. Knowing that hypotenuse equals to 13 DOES NOT mean that the sides of the right triangle necessarily must be in the ratio of Pythagorean triple - 5:12:13. Or in other words: if \(a^2+b^2=13^2\) DOES NOT mean that \(a=5\) and \(b=12\), certainly this is one of the possibilities but definitely not the only one. In fact \(a^2+b^2=13^2\) has infinitely many solutions for \(a\) and \(b\) and only one of them is \(a=5\) and \(b=12\).

For example: \(a=1\) and \(b=\sqrt{168}\) or \(a=2\) and \(b=\sqrt{165}\) ...

Hope it's clear.

BACK TO THE ORIGINAL QUESTION:
In right triangle ABC, BC is the hypotenuse. If BC is 13 and AB + AC = 15, what is the area of the triangle?
A. 2√7
B. 2√14
C. 14
D. 28
E. 56

Since ABC is a right triangle and BC is hypotenuse then the area is \(\frac{1}{2}*AB*AC\).

\(AB + AC = 15\) --> square it: \(AB^2 + 2*AB*AC + AC^2=225\).

Also, since BC is the hypotenuse, then \(AB^2 + AC^2=BC^2=169\).

Substitute the second equation in the first: \(169+ 2*AB*AC=225\) --> \(2*AB*AC=56\) --> \(AB*AC=28\).

The area = \(\frac{1}{2}*AB*AC=14\).

Answer: C.

I think the difficulty in this question lies in the fact that you cannot use the Pythagorean Theorem to solve for sides AB and BA, or alternatively the individual values of X and Y. The objective of this question, as posted, is to solve for the product of X and Y. It isn't necessary to know the individual values of X and Y in order to solve the question- the area of right triangle is

Area = (1/2) Base * H

Yet in this problem the product of sides AB and BA, or again X and Y, can be substituted for (Base * Height).

The only thing I'd like to know about this problem is, well, what are the values of sides AB and BA? The factors of 28 are 1, 2, 4 , 7 , 14, and 28
28, 14, 2 and 1 are out because 28 and 14 are larger numbers then the hypotenuse- though
7^2 + 4^2 does not equal 13^2?

Why do you assume that AB and AC must be integers? If you solve \(AB + AC = 15\) and \(AB^2 + AC^2=169\) you'll get that \(AB=\frac{15}{2} - \frac{\sqrt{113}}{2}\) and \(AC=\frac{15}{2} + \frac{\sqrt{113}}{2}\) or vise-versa.
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 14 Jul 2025
Posts: 102,576
Own Kudos:
Given Kudos: 98,190
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 102,576
Kudos: 741,553
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Nunuboy1994
Bunuel
ronr34
In right triangle ABC, BC is the hypotenuse. If BC is 13 and AB + AC = 15, what is the area of the triangle?

A. 2√7
B. 2√14
C. 14
D. 28
E. 56


I have a question regarding this.
If Bc is the hypotenuse, and the triangle is a right triangle,
that means that the other two side must be 5:12:13....
How can it be stated that the other sides sum to be 15?

Please explain.
thanks

You assume with no ground for it that the lengths of the sides are integers. Knowing that hypotenuse equals to 13 DOES NOT mean that the sides of the right triangle necessarily must be in the ratio of Pythagorean triple - 5:12:13. Or in other words: if \(a^2+b^2=13^2\) DOES NOT mean that \(a=5\) and \(b=12\), certainly this is one of the possibilities but definitely not the only one. In fact \(a^2+b^2=13^2\) has infinitely many solutions for \(a\) and \(b\) and only one of them is \(a=5\) and \(b=12\).

For example: \(a=1\) and \(b=\sqrt{168}\) or \(a=2\) and \(b=\sqrt{165}\) ...

Hope it's clear.

BACK TO THE ORIGINAL QUESTION:
In right triangle ABC, BC is the hypotenuse. If BC is 13 and AB + AC = 15, what is the area of the triangle?
A. 2√7
B. 2√14
C. 14
D. 28
E. 56

Since ABC is a right triangle and BC is hypotenuse then the area is \(\frac{1}{2}*AB*AC\).

\(AB + AC = 15\) --> square it: \(AB^2 + 2*AB*AC + AC^2=225\).

Also, since BC is the hypotenuse, then \(AB^2 + AC^2=BC^2=169\).

Substitute the second equation in the first: \(169+ 2*AB*AC=225\) --> \(2*AB*AC=56\) --> \(AB*AC=28\).

The area = \(\frac{1}{2}*AB*AC=14\).

Answer: C.

I think the difficulty in this question lies in the fact that you cannot use the Pythagorean Theorem to solve for sides AB and BA, or alternatively the individual values of X and Y. The objective of this question, as posted, is to solve for the product of X and Y. It isn't necessary to know the individual values of X and Y in order to solve the question- the area of right triangle is

Area = (1/2) Base * H

Yet in this problem the product of sides AB and BA, or again X and Y, can be substituted for (Base * Height).

The only thing I'd like to know about this problem is, well, what are the values of sides AB and BA? The factors of 28 are 1, 2, 4 , 7 , 14, and 28
28, 14, 2 and 1 are out because 28 and 14 are larger numbers then the hypotenuse- though
7^2 + 4^2 does not equal 13^2?

By the way your doubt is already addressed in the very first paragraph of the very post you are quoting as well as in several other posts in this thread.
User avatar
Knightclaw
Joined: 19 Dec 2021
Last visit: 11 Jun 2025
Posts: 15
Own Kudos:
Given Kudos: 146
Location: India
GMAT Focus 1: 675 Q87 V84 DI79
GRE 1: Q170 V161
WE:Programming (Computer Software)
GMAT Focus 1: 675 Q87 V84 DI79
GRE 1: Q170 V161
Posts: 15
Kudos: 11
Kudos
Add Kudos
Bookmarks
Bookmark this Post
area of triangle = (a+b+c) * r / 2
where , r is in-radii, c is hypotenuse

for a right triangle inradii = (a+b-c)/2 ( good formula to remember but only for right triangle)

so area of triangle is
= (a+b+c)(a+b-c)/4
= (15+13)(15-13)/4
= 28 * 2 / 4
= 14


another good formula to remember
area of triangle = (a*b*c)/(4R) here R is circumradii

if it is a right triangle R = c /2 , c is hypotenuse
User avatar
bumpbot
User avatar
Non-Human User
Joined: 09 Sep 2013
Last visit: 04 Jan 2021
Posts: 37,406
Own Kudos:
Posts: 37,406
Kudos: 1,013
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
Moderators:
Math Expert
102576 posts
PS Forum Moderator
691 posts