GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 17 Oct 2019, 13:32

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

In the rectangular coordinate system, are the points (a,

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Find Similar Topics 
Intern
Intern
avatar
Joined: 17 Mar 2011
Posts: 7
Reviews Badge
Re: In the rectangular coordinate system, are the points (a,  [#permalink]

Show Tags

New post 27 Jul 2012, 21:49
Hi there, i was just wondering if the way i do it is correct!

Statement 1: insuff
Statement 2 : |a|+|b|=|c|+|d|

Our goal is to prove that a^2 + b^2 = c^2 + d^2

(1+2)

Square both sides in stmt 2.

We have a^2 + b^2 + 2|a||b| = c^2 + d^2 + 2|c||d| ----------- *
From one we know that a/b=c/d, therefore their LHS=RHS and therefore, this condition would allow us to cancel out 2|a||b| from LHS and 2|c||d| from equation *.

Please tell me that i am correct! =)

Reagan
Intern
Intern
avatar
Joined: 12 Jul 2012
Posts: 16
Re: In the rectangular coordinate system, are the points (a,  [#permalink]

Show Tags

New post 08 Aug 2012, 03:22
1
reagan wrote:
Hi there, i was just wondering if the way i do it is correct!

Statement 1: insuff
Statement 2 : |a|+|b|=|c|+|d|

Our goal is to prove that a^2 + b^2 = c^2 + d^2

(1+2)

Square both sides in stmt 2.

We have a^2 + b^2 + 2|a||b| = c^2 + d^2 + 2|c||d| ----------- *
From one we know that a/b=c/d, therefore their LHS=RHS and therefore, this condition would allow us to cancel out 2|a||b| from LHS and 2|c||d| from equation *.

Please tell me that i am correct! =)

Reagan


Absolutely, I found this approach much better. Infact I am wondering why we are targetting absolute values in the equation.

(a+b)^2 = a^2+b^2+2ab [no absolute |a|, |b| needed]

From
1) we know ab = cd
2) we know a + b = c + d. and hence (a+b)^2 = (c+d)^2

Combining 1) & 2) we can very well see that a^2+b^2 = c^2+d^2
Manager
Manager
User avatar
Joined: 28 Dec 2012
Posts: 96
Location: India
Concentration: Strategy, Finance
WE: Engineering (Energy and Utilities)
GMAT ToolKit User
Re: In the rectangular coordinate system, are the points (a, b)  [#permalink]

Show Tags

New post 15 Jan 2013, 08:45
1
1+2:

1) Ensures that the lines joining each of the two points to origin have same slope.
2) Ensures that absicca and ordinates correspondingly have equal magnitudes.
{If one line has points (a,b) then the other line will have coordinates (ak,bk) but (2) ensures that |k| = 1.}

Hence C.

KUDOS IF YOU LIKE!
_________________
Impossibility is a relative concept!!
Manager
Manager
User avatar
Status: struggling with GMAT
Joined: 06 Dec 2012
Posts: 118
Location: Bangladesh
Concentration: Accounting
GMAT Date: 04-06-2013
GPA: 3.65
Re: ManhttanGMAT Practice CAT  [#permalink]

Show Tags

New post 22 Apr 2013, 12:55
Bunuel wrote:
nsp007 wrote:
In the rectangular coordinate system, are the points (a, b) and (c, d) equidistant from the origin?

(1) a/b = c/d

(2) \(\sqrt{a^2}+ \sqrt{b^2} = \sqrt{c^2} + \sqrt{d^2}\)

Will post OA later.



In the rectangular coordinate system, are the points (a, b) and (c, d) equidistant from the origin?

Distance between the point A (x,y) and the origin can be found by the formula: \(D=\sqrt{x^2+y^2}\).

So we are asked whether \(\sqrt{a^2+b^2}=\sqrt{c^2+d^2}\)? Or whether \(a^2+b^2=c^2+d^2\)?

(1) \(\frac{a}{b}=\frac{c}{d}\) --> \(a=cx\) and \(b=dx\), for some non-zero \(x\). Not sufficient.

(2) \(\sqrt{a^2}+\sqrt{b^2}=\sqrt{c^2} +\sqrt{d^2}\) --> \(|a|+|b|=|c|+|d|\). Not sufficient.

(1)+(2) From (1) \(a=cx\) and \(b=dx\), substitute this in (2): \(|cx|+|dx|=|c|+|d|\) --> \(|x|(|c|+|d|)=|c|+|d|\) --> \(|x|=1\) (another solution \(|c|+|d|=0\) is not possible as \(d\) in (1) given in denominator and can not be zero, so \(d\neq{0}\) --> \(|c|+|d|>0\)) --> now, as \(|x|=1\) and \(a=cx\) and \(b=dx\), then \(|a|=|c|\) and \(|b|=|d|\) --> square this equations: \(a^2=c^2\) and \(b^2=d^2\) --> add them: \(a^2+b^2=c^2+d^2\). Sufficient.

Answer: C.

Hi Bunnel
i am not understanding how \(\sqrt{a^2}+\sqrt{b^2}=\sqrt{c^2} +\sqrt{d^2}\) --> \(|a|+|b|=|c|+|d|\)
have come?
Veritas Prep GMAT Instructor
User avatar
V
Joined: 16 Oct 2010
Posts: 9705
Location: Pune, India
Re: ManhttanGMAT Practice CAT  [#permalink]

Show Tags

New post 22 Apr 2013, 22:00
mun23 wrote:
\(\sqrt{a^2}+\sqrt{b^2}=\sqrt{c^2} +\sqrt{d^2}\) --> \(|a|+|b|=|c|+|d|\)
have come?


By convention, only positive roots are considered (at least in GMAT)

\(\sqrt{4} = 2\) (and not -2)

Similarly, \(\sqrt{a^2} = |a|\) i.e. only the positive value
_________________
Karishma
Veritas Prep GMAT Instructor

Learn more about how Veritas Prep can help you achieve a great GMAT score by checking out their GMAT Prep Options >
Manager
Manager
avatar
Joined: 04 Apr 2013
Posts: 112
Re: coordinate geometry  [#permalink]

Show Tags

New post 15 Aug 2013, 19:29
2
sudharsansuski wrote:
In the rectangular coordinate system, are the points (a, b) and (c, d) equidistant from the origin?

(1) a/b = c/d

(2) (a^2)^0.5 + (b^2)^0.5 = (c^2)^0.5 + (d^2)^0.5

I didnt understand the answer explanation given by MGMAT. Could someone please help.





Origin on coordinate system is (0,0). The question is if distance between (0,0) to (a,b) is same as distance between (0,0) to (c,d)

Case 1: - a/b = c/d

let a=7, b= 14 then a/b = 1/2.

So c/d fraction has to be 1/2. i.e. c can be 2 and d can be 4. or c can be 6 & d can be 12 or c can be 7 & d can be 14. So distance between origin can either be same to (c,d) or different from (a,b). Clearly insufficient

Case 2:- (a^2)^0.5 + (b^2)^0.5 = (c^2)^0.5 + (d^2)^0.5

translates to "a + b = c + d"

let (a,b) = (4,4) and (c,d) = (4,4). Then it satisfies the condition a+b = c+d. Also distance from origin to (a,b) is same as (c,d).

let (a,b) = (5,3) and (c,d) = (4,4). Then it satisfies the condition a+b = c+d. And distance from origin to (a,b) is not same as (c,d).

Insufficient.

Lets take 1 & 2 together

we have a/b = c/d.......so a= bc/d--- Eq (1)

we also have a + b = c + d

substitute a=bc/d from Eq(1)

bc/d + b = c + d

b(c/d + 1) = c + d

b(c + d) = d(c+d)

so b = d

similarly we get a=b.

so taking 1 & 2 together, the distance between origin to both points are equal.
_________________
Maadhu

MGMAT1 - 540 ( Trying to improve )
Director
Director
User avatar
Joined: 14 Dec 2012
Posts: 704
Location: India
Concentration: General Management, Operations
GMAT 1: 700 Q50 V34
GPA: 3.6
GMAT ToolKit User
Re: In the rectangular coordinate system, are the points (a, b)  [#permalink]

Show Tags

New post 16 Aug 2013, 03:33
sudharsansuski wrote:
In the rectangular coordinate system, are the points (a, b) and (c, d) equidistant from the origin?

(1) a/b = c/d

(2) (a^2)^0.5 + (b^2)^0.5 = (c^2)^0.5 + (d^2)^0.5

I didnt understand the answer explanation given by MGMAT. Could someone please help.


basically we need to prove
\(a^2+b^2 = c^2+d^2\)

stmnt 1:
\(\frac{a}{b} = \frac{c}{d}\)

1/2 = 3/6 ==>using this we can prove NO
1/2 = 1/2 ==>using these numbers we can prove yes

hence insufficient
statement 2:
\(\sqrt{(a^2)} + \sqrt{(b^2)} = \sqrt{(c^2)} + \sqrt{(d^2)}\)or\(|a| + |b| = |c| + |d|\)

putting \(a=b=c=d=1\)..we will get YES.
Putting \(a= 1, b=2, c= 0, d=3\)...we will get NO.
HENCE INSUFFICIENT.

combining.
from 2nd statement: \(|a| + |b| = |c| + |d|\)
rearrange:
\(|a| - |d| = |c| - |b|\) and then square both sides.
\(a^2 + d^2 - 2*|a|*|d| = c^2 + b^2 - 2*|c|*|b|.\)

Since \(ad = bc\) as per statement 1
we can cancel few things:
\(a^2 + d^2 - 2*|a|*|d| = c^2 + b^2 - 2*|c|*|b|.\)

hence sufficient
_________________
When you want to succeed as bad as you want to breathe ...then you will be successfull....

GIVE VALUE TO OFFICIAL QUESTIONS...



GMAT RCs VOCABULARY LIST: http://gmatclub.com/forum/vocabulary-list-for-gmat-reading-comprehension-155228.html
learn AWA writing techniques while watching video : http://www.gmatprepnow.com/module/gmat-analytical-writing-assessment
: http://www.youtube.com/watch?v=APt9ITygGss
Intern
Intern
avatar
Joined: 30 May 2012
Posts: 18
Concentration: Finance, Strategy
GMAT 1: 730 Q49 V41
GPA: 3.39
Re: In the rectangular coordinate system, are the points (a, b)  [#permalink]

Show Tags

New post 16 Aug 2013, 09:13
nsp007 wrote:
In the rectangular coordinate system, are the points (a, b) and (c, d) equidistant from the origin?

(1) \(\frac{a}{b}=\frac{c}{d}\)

(2) \(\sqrt{a^2}+ \sqrt{b^2} = \sqrt{c^2} + \sqrt{d^2}\)


1. ad-bc=0 means that the vector pointing to (c,d) is a scalar multiple of the vector pointing to (a,b). In other words they are collinear with the origin. If they are equidistant to the origin, the scalar will be 1 or -1. But given this information it could be any scalar. Not sufficient.

2. |a|+|b|=|c|+|d|. This means that (a,b) and (c,d) both lay on some square centered at the origin. But they could be anywhere on the square. Not sufficient.

1 and 2. (a,b) and (c,d) are collinear with the origin and both lay on a square centered at the origin. Therefore they must be the same distance from the origin. Sufficient. C
Intern
Intern
avatar
Joined: 28 May 2014
Posts: 16
Re: In the rectangular coordinate system, are the points (a,  [#permalink]

Show Tags

New post 02 Jun 2014, 06:06
(Don't read my "solution" I am studying and got this one wrong. :))

The first statement is telling me that the ratio between the x and y value are the same for both points.

This could be (1,3) or (10,30) where the second one is obviously further away from the origin. Hence insufficient.

Statement (2) I cannot fully understand intuitively. So I'll plug in some numbers.

0,1 =1
1/4,1/4 = 1/2+1/2=1
distance from origin in the second case = (1/2)^2+(1/2)^2=(2/4) square root of (1/2) =/= 1.

So it differs.

However, by using the same numbers I could make it work. So I can rule out both and go with E.

Wrong answer above, will have a look at the solutions provided by other users :)
Intern
Intern
avatar
Joined: 20 Jun 2014
Posts: 15
Location: United States
Concentration: Finance, Economics
GPA: 3.87
Re: In the rectangular coordinate system, are the points (a, b)  [#permalink]

Show Tags

New post 31 Jul 2014, 05:33
This was my view:

You see immediately that both statements alone are not sufficient. So start evaluating the combination of both:

Statement A says that that the points are on the same line through the origin. Statement B says that the different "possible" points all have an equal distance to the x-axis, but also to the y-axis. Therefore, combining both options say that either (a,b) = (c,d) or (a,b) = (-c, -d). So equidistant from origin.
Manager
Manager
User avatar
Joined: 10 Mar 2013
Posts: 168
GMAT 1: 620 Q44 V31
GMAT 2: 690 Q47 V37
GMAT 3: 610 Q47 V28
GMAT 4: 700 Q50 V34
GMAT 5: 700 Q49 V36
GMAT 6: 690 Q48 V35
GMAT 7: 750 Q49 V42
GMAT 8: 730 Q50 V39
Re: In the rectangular coordinate system, are the points (a,  [#permalink]

Show Tags

New post 11 Aug 2014, 00:37
Bunuel wrote:
tinki wrote:
Official explanation says:
"If we know the proportion of a to b is the same as c to d and that |a| + |b| = |c| + |d|, then it must be the case that |a| = |c| and |b| = |d| ?

could someone elaborate how we are supposed to know |a| = |c| and |b| = |d|? a bit vague statement for me

thanks for responses


In the rectangular coordinate system, are the points (a, b) and (c, d) equidistant from the origin?

Distance between the point A (x,y) and the origin can be found by the formula: \(D=\sqrt{x^2+y^2}\).

So we are asked whether \(\sqrt{a^2+b^2}=\sqrt{c^2+d^2}\)? Or whether \(a^2+b^2=c^2+d^2\)?

(1) \(\frac{a}{b}=\frac{c}{d}\) --> \(a=cx\) and \(b=dx\), for some non-zero \(x\). Not sufficient.

(2) \(\sqrt{a^2}+\sqrt{b^2}=\sqrt{c^2} +\sqrt{d^2}\) --> \(|a|+|b|=|c|+|d|\). Not sufficient.

(1)+(2) From (1) \(a=cx\) and \(b=dx\), substitute this in (2): \(|cx|+|dx|=|c|+|d|\) --> \(|x|(|c|+|d|)=|c|+|d|\) --> \(|x|=1\) (another solution \(|c|+|d|=0\) is not possible as \(d\) in (1) given in denominator and can not be zero, so \(d\neq{0}\) --> \(|c|+|d|>0\)) --> now, as \(|x|=1\) and \(a=cx\) and \(b=dx\), then \(|a|=|c|\) and \(|b|=|d|\) --> square this equations: \(a^2=c^2\) and \(b^2=d^2\) --> add them: \(a^2+b^2=c^2+d^2\). Sufficient.

Answer: C.


Bunuel, how did you quickly determine that (2) was Not Sufficient?
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 58402
Re: In the rectangular coordinate system, are the points (a,  [#permalink]

Show Tags

New post 12 Aug 2014, 08:09
TooLong150 wrote:
Bunuel wrote:
tinki wrote:
Official explanation says:
"If we know the proportion of a to b is the same as c to d and that |a| + |b| = |c| + |d|, then it must be the case that |a| = |c| and |b| = |d| ?

could someone elaborate how we are supposed to know |a| = |c| and |b| = |d|? a bit vague statement for me

thanks for responses


In the rectangular coordinate system, are the points (a, b) and (c, d) equidistant from the origin?

Distance between the point A (x,y) and the origin can be found by the formula: \(D=\sqrt{x^2+y^2}\).

So we are asked whether \(\sqrt{a^2+b^2}=\sqrt{c^2+d^2}\)? Or whether \(a^2+b^2=c^2+d^2\)?

(1) \(\frac{a}{b}=\frac{c}{d}\) --> \(a=cx\) and \(b=dx\), for some non-zero \(x\). Not sufficient.

(2) \(\sqrt{a^2}+\sqrt{b^2}=\sqrt{c^2} +\sqrt{d^2}\) --> \(|a|+|b|=|c|+|d|\). Not sufficient.

(1)+(2) From (1) \(a=cx\) and \(b=dx\), substitute this in (2): \(|cx|+|dx|=|c|+|d|\) --> \(|x|(|c|+|d|)=|c|+|d|\) --> \(|x|=1\) (another solution \(|c|+|d|=0\) is not possible as \(d\) in (1) given in denominator and can not be zero, so \(d\neq{0}\) --> \(|c|+|d|>0\)) --> now, as \(|x|=1\) and \(a=cx\) and \(b=dx\), then \(|a|=|c|\) and \(|b|=|d|\) --> square this equations: \(a^2=c^2\) and \(b^2=d^2\) --> add them: \(a^2+b^2=c^2+d^2\). Sufficient.

Answer: C.


Bunuel, how did you quickly determine that (2) was Not Sufficient?


You can do this with number plugging. The question asks whether \(a^2+b^2=c^2+d^2\) and (2) says that \(|a|+|b|=|c|+|d|\). If a = b = c = d = 0, then the answer would be YES but if a = 0, b = 2, c = 1 and d = 1, then the answer would be NO.
_________________
Intern
Intern
avatar
Joined: 09 Mar 2014
Posts: 3
Concentration: Leadership, Marketing
GPA: 3.01
WE: General Management (Energy and Utilities)
GMAT ToolKit User
Re: In the rectangular coordinate system, are the points (a, b)  [#permalink]

Show Tags

New post 06 Jan 2015, 23:12
Bunuel Sir,

I Didn't understand this:-

b/a=a/c->bc=ad->c/a=a/b
given a/b=c/d=cx/dx

(as the ratios are equal then there exist some for which d=cx and b=dx)
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 58402
Re: In the rectangular coordinate system, are the points (a, b)  [#permalink]

Show Tags

New post 07 Jan 2015, 07:07
Director
Director
avatar
S
Joined: 09 Jun 2010
Posts: 715
Re: In the rectangular coordinate system, are the points (a,  [#permalink]

Show Tags

New post 28 Apr 2015, 02:42
mbaMission wrote:
In the rectangular coordinate system, are the points \((a, b)\) and \((c, d)\) equidistant from the origin?

(1) \(\frac{a}{b} =\frac{c}{d}\)

(2) \(\sqrt{a^2} + \sqrt{b^2} = \sqrt{c^2} + \sqrt{d^2}\)

Spoiler: :: Answer:
C



this question is pretty weid. is this question from gmatprep?
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 58402
Re: In the rectangular coordinate system, are the points (a,  [#permalink]

Show Tags

New post 28 Apr 2015, 04:32
Director
Director
avatar
S
Joined: 09 Jun 2010
Posts: 715
Re: In the rectangular coordinate system, are the points (a,  [#permalink]

Show Tags

New post 15 May 2015, 01:56
Bunuel wrote:
tinki wrote:
Official explanation says:
"If we know the proportion of a to b is the same as c to d and that |a| + |b| = |c| + |d|, then it must be the case that |a| = |c| and |b| = |d| ?

could someone elaborate how we are supposed to know |a| = |c| and |b| = |d|? a bit vague statement for me

thanks for responses


In the rectangular coordinate system, are the points (a, b) and (c, d) equidistant from the origin?

Distance between the point A (x,y) and the origin can be found by the formula: \(D=\sqrt{x^2+y^2}\).

So we are asked whether \(\sqrt{a^2+b^2}=\sqrt{c^2+d^2}\)? Or whether \(a^2+b^2=c^2+d^2\)?

(1) \(\frac{a}{b}=\frac{c}{d}\) --> \(a=cx\) and \(b=dx\), for some non-zero \(x\). Not sufficient.

(2) \(\sqrt{a^2}+\sqrt{b^2}=\sqrt{c^2} +\sqrt{d^2}\) --> \(|a|+|b|=|c|+|d|\). Not sufficient.

(1)+(2) From (1) \(a=cx\) and \(b=dx\), substitute this in (2): \(|cx|+|dx|=|c|+|d|\) --> \(|x|(|c|+|d|)=|c|+|d|\) --> \(|x|=1\) (another solution \(|c|+|d|=0\) is not possible as \(d\) in (1) given in denominator and can not be zero, so \(d\neq{0}\) --> \(|c|+|d|>0\)) --> now, as \(|x|=1\) and \(a=cx\) and \(b=dx\), then \(|a|=|c|\) and \(|b|=|d|\) --> square this equations: \(a^2=c^2\) and \(b^2=d^2\) --> add them: \(a^2+b^2=c^2+d^2\). Sufficient.

Answer: C.


the key point here is to know that a=xc
this is simple but tricky

wonderful explanation of this problem . thank you , Bunnu
Intern
Intern
User avatar
B
Joined: 08 Jan 2018
Posts: 4
Re: In the rectangular coordinate system, are the points (a,  [#permalink]

Show Tags

New post 26 May 2018, 01:40
Bunuel wrote:
nsp007 wrote:
In the rectangular coordinate system, are the points (a, b) and (c, d) equidistant from the origin?

(1) a/b = c/d

(2) \(\sqrt{a^2}+ \sqrt{b^2} = \sqrt{c^2} + \sqrt{d^2}\)

Will post OA later.



In the rectangular coordinate system, are the points (a, b) and (c, d) equidistant from the origin?

Distance between the point A (x,y) and the origin can be found by the formula: \(D=\sqrt{x^2+y^2}\).

So we are asked whether \(\sqrt{a^2+b^2}=\sqrt{c^2+d^2}\)? Or whether \(a^2+b^2=c^2+d^2\)?

(1) \(\frac{a}{b}=\frac{c}{d}\) --> \(a=cx\) and \(b=dx\), for some non-zero \(x\). Not sufficient.

(2) \(\sqrt{a^2}+\sqrt{b^2}=\sqrt{c^2} +\sqrt{d^2}\) --> \(|a|+|b|=|c|+|d|\). Not sufficient.

(1)+(2) From (1) \(a=cx\) and \(b=dx\), substitute this in (2): \(|cx|+|dx|=|c|+|d|\) --> \(|x|(|c|+|d|)=|c|+|d|\) --> \(|x|=1\) (another solution \(|c|+|d|=0\) is not possible as \(d\) in (1) given in denominator and can not be zero, so \(d\neq{0}\) --> \(|c|+|d|>0\)) --> now, as \(|x|=1\) and \(a=cx\) and \(b=dx\), then \(|a|=|c|\) and \(|b|=|d|\) --> square this equations: \(a^2=c^2\) and \(b^2=d^2\) --> add them: \(a^2+b^2=c^2+d^2\). Sufficient.

Answer: C.



Hi y'all,

I'm a newbie here.
can you please review my method?

I was disagreeing that only (2) is not sufficient.
I use Trigonometry to solve (2). The (x,y) must make a right triangle with x-axis.
Thus, the distance between the dot and the origin must be the hypotenuse. And (2) seems to be the equation for the hypotenuse.
If the 2 triangle are equal, then the distance must be equal.

Or am I missing something...?
Manager
Manager
User avatar
S
Joined: 02 Aug 2017
Posts: 52
Concentration: Strategy, Nonprofit
Schools: ISB '20
GPA: 3.71
In the rectangular coordinate system, are the points (a,  [#permalink]

Show Tags

New post 22 Aug 2018, 09:11
Please look at the attachment
Attachments

15349544031147315906331893752635.jpg
15349544031147315906331893752635.jpg [ 2.57 MiB | Viewed 342 times ]


_________________

Everything is in flux, nothing stays still


MGMAT1 :590 Q42 V30 (07/07/18)
VERITAS :660 Q48 V33 (16/07/18)
GMATPREP1 :690 Q46 V36 (22/07/18)
GMATPREP2 :740 Q51 V39 (06/08/18)
ECONOMIST :740 Q49 V44 (11/08/18)
KAPLAN :690 Q49 V36 (17/08/18)
PRINCETON :690 Q48 V38 (26/08/18)
MGMAT2 :720 Q43 V45 (02/09/18)
SVP
SVP
User avatar
P
Joined: 03 Jun 2019
Posts: 1699
Location: India
Premium Member Reviews Badge CAT Tests
In the rectangular coordinate system, are the points (a,  [#permalink]

Show Tags

New post 24 Sep 2019, 10:36
mbaMission wrote:
In the rectangular coordinate system, are the points \((a, b)\) and \((c, d)\) equidistant from the origin?

(1) \(\frac{a}{b} =\frac{c}{d}\)

(2) \(\sqrt{a^2} + \sqrt{b^2} = \sqrt{c^2} + \sqrt{d^2}\)


Asked: In the rectangular coordinate system, are the points \((a, b)\) and \((c, d)\) equidistant from the origin?
Q. a^2 + b^2 = c^2 + d^2 ?

(1) \(\frac{a}{b} =\frac{c}{d}\)
NOT SUFFICIENT

(2) \(\sqrt{a^2} + \sqrt{b^2} = \sqrt{c^2} + \sqrt{d^2}\)
|a| + |b| = |c| + |d|
Squaring both sides
a^2 + b^2 + 2|a||b| = c^2 + d^2 + 2 |c||d|
NOT SUFFICIENT

(1) + (2)
(1) \(\frac{a}{b} =\frac{c}{d}\)

(2) \(\sqrt{a^2} + \sqrt{b^2} = \sqrt{c^2} + \sqrt{d^2}\)
a^2 + b^2 + 2|a||b| = c^2 + d^2 + 2 |c||d|
NOT SUFFICIENT

IMO E
_________________
"Success is not final; failure is not fatal: It is the courage to continue that counts."

Please provide kudos if you like my post. Kudos encourage active discussions.

My GMAT Resources: -

Efficient Learning
All you need to know about GMAT quant

Tele: +91-11-40396815
Mobile : +91-9910661622
E-mail : kinshook.chaturvedi@gmail.com
GMAT Club Bot
In the rectangular coordinate system, are the points (a,   [#permalink] 24 Sep 2019, 10:36

Go to page   Previous    1   2   3    Next  [ 46 posts ] 

Display posts from previous: Sort by

In the rectangular coordinate system, are the points (a,

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  





cron

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne