GMAT Question of the Day - Daily to your Mailbox; hard ones only

 It is currently 25 May 2019, 17:32 ### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

#### Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here. ### Request Expert Reply # In the rectangular coordinate system, are the points (a,

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics
Author Message
TAGS:

### Hide Tags

Manager  Joined: 01 Aug 2008
Posts: 97
In the rectangular coordinate system, are the points (a,  [#permalink]

### Show Tags

12
83 00:00

Difficulty:   95% (hard)

Question Stats: 38% (02:13) correct 62% (02:03) wrong based on 1055 sessions

### HideShow timer Statistics

In the rectangular coordinate system, are the points $$(a, b)$$ and $$(c, d)$$ equidistant from the origin?

(1) $$\frac{a}{b} =\frac{c}{d}$$

(2) $$\sqrt{a^2} + \sqrt{b^2} = \sqrt{c^2} + \sqrt{d^2}$$

_________________
==============================================
Do not answer without sharing the reasoning behind ur choice
-----------------------------------------------------------
Working on my weakness : GMAT Verbal
------------------------------------------------------------
Ask:
Why, What, How, When, Where, Who
==============================================

Originally posted by mbaMission on 02 Jun 2009, 04:05.
Last edited by Bunuel on 28 Apr 2015, 04:31, edited 1 time in total.
Added the OA.
##### Most Helpful Expert Reply
Math Expert V
Joined: 02 Sep 2009
Posts: 55274
Re: ManhttanGMAT Practice CAT  [#permalink]

### Show Tags

15
12
nsp007 wrote:
In the rectangular coordinate system, are the points (a, b) and (c, d) equidistant from the origin?

(1) a/b = c/d

(2) $$\sqrt{a^2}+ \sqrt{b^2} = \sqrt{c^2} + \sqrt{d^2}$$

Will post OA later.

In the rectangular coordinate system, are the points (a, b) and (c, d) equidistant from the origin?

Distance between the point A (x,y) and the origin can be found by the formula: $$D=\sqrt{x^2+y^2}$$.

So we are asked whether $$\sqrt{a^2+b^2}=\sqrt{c^2+d^2}$$? Or whether $$a^2+b^2=c^2+d^2$$?

(1) $$\frac{a}{b}=\frac{c}{d}$$ --> $$a=cx$$ and $$b=dx$$, for some non-zero $$x$$. Not sufficient.

(2) $$\sqrt{a^2}+\sqrt{b^2}=\sqrt{c^2} +\sqrt{d^2}$$ --> $$|a|+|b|=|c|+|d|$$. Not sufficient.

(1)+(2) From (1) $$a=cx$$ and $$b=dx$$, substitute this in (2): $$|cx|+|dx|=|c|+|d|$$ --> $$|x|(|c|+|d|)=|c|+|d|$$ --> $$|x|=1$$ (another solution $$|c|+|d|=0$$ is not possible as $$d$$ in (1) given in denominator and can not be zero, so $$d\neq{0}$$ --> $$|c|+|d|>0$$) --> now, as $$|x|=1$$ and $$a=cx$$ and $$b=dx$$, then $$|a|=|c|$$ and $$|b|=|d|$$ --> square this equations: $$a^2=c^2$$ and $$b^2=d^2$$ --> add them: $$a^2+b^2=c^2+d^2$$. Sufficient.

Answer: C.
_________________
##### Most Helpful Community Reply
Manager  Joined: 19 Nov 2009
Posts: 228
In the rectangular coordinate system, are the points (a, b)  [#permalink]

### Show Tags

5
13
In the rectangular coordinate system, are the points (a, b) and (c, d) equidistant from the origin?

(1) $$\frac{a}{b}=\frac{c}{d}$$

(2) $$\sqrt{a^2}+ \sqrt{b^2} = \sqrt{c^2} + \sqrt{d^2}$$

Originally posted by nsp007 on 10 Apr 2010, 23:25.
Last edited by Bunuel on 07 Apr 2012, 08:24, edited 1 time in total.
Edited the question and added the OA
##### General Discussion
SVP  Joined: 29 Aug 2007
Posts: 2310
Re: In the rectangular coordinate system, are the points (a,  [#permalink]

### Show Tags

1
5
mbaMission wrote:
In the rectangular coordinate system, are the points (a, b) and (c, d) equidistant from the origin?

(1) a/b = c/d
(2) (a^2)^(1/2) + (b^2)^(1/2) = (c^2)^(1/2) + (d^2)^(1/2)

(1) If a/b = c/d, a and b could be 100 and c and d could be 1 or a, b, c and d could be 1. NSF.

(2) If (a^2)^(1/2) + (b^2)^(1/2) = (c^2)^(1/2) + (d^2)^(1/2), then a+b = c+d. In this case, if a = 9 and b = 1, and c =d=5, a+b = c+d is true. but they have different distance.NSF.

From 1 and 2, a must be equal to c and b must be equal to d. So Suff.

Thats C.
_________________
Verbal: http://gmatclub.com/forum/new-to-the-verbal-forum-please-read-this-first-77546.html
Math: http://gmatclub.com/forum/new-to-the-math-forum-please-read-this-first-77764.html
Gmat: http://gmatclub.com/forum/everything-you-need-to-prepare-for-the-gmat-revised-77983.html

GT
Senior Manager  Joined: 16 Jan 2009
Posts: 328
Concentration: Technology, Marketing
GMAT 1: 700 Q50 V34 GPA: 3
WE: Sales (Telecommunications)
Re: In the rectangular coordinate system, are the points (a,  [#permalink]

### Show Tags

In the rectangular coordinate system, are the points (a, b) and (c, d) equidistant from the origin?

(1) a/b = c/d

This singnifies that the sign combination on both sides of = is the same.
i.e. if one of the numbers on LHS is -ve , one of the numbers on RHS has to -ve as well.
However since a,b / c,d can take any value , INSUFFICIENT.

(2) (a^2)^(1/2) + (b^2)^(1/2) = (c^2)^(1/2) + (d^2)^(1/2)
Since we do not know anything about signs of a,b / c,d - INSUFFICIENT.

Using 1 and 2 together ,
using (1) the second statement drills down to
a+b=c+d (the sign combination on both sides of = is the same.)

Since a/b=c/d and a+b=c+d , (a, b) and (c, d) equidistant from the origin and infact represent the same point.
_________________
Lahoosaher
Manager  Joined: 01 Aug 2008
Posts: 97
Re: In the rectangular coordinate system, are the points (a,  [#permalink]

### Show Tags

7
1
goldeneagle94 wrote:
amolsk11 wrote:
In the rectangular coordinate system, are the points (a, b) and (c, d) equidistant from the origin?

(1) a/b = c/d

This singnifies that the sign combination on both sides of = is the same.
i.e. if one of the numbers on LHS is -ve , one of the numbers on RHS has to -ve as well.
However since a,b / c,d can take any value , INSUFFICIENT.

(2) (a^2)^(1/2) + (b^2)^(1/2) = (c^2)^(1/2) + (d^2)^(1/2)
Since we do not know anything about signs of a,b / c,d - INSUFFICIENT.

Using 1 and 2 together ,
using (1) the second statement drills down to
a+b=c+d (the sign combination on both sides of = is the same.)

Since a/b=c/d and a+b=c+d , (a, b) and (c, d) equidistant from the origin and infact represent the same point.

Is there a way we can derive, using these two equations, that the two points are equidistant ?

For the derivation part:

a^2 + b^2 = c^2 + d^2

b^2[(a^2/b^2) + 1] = d^2[(c^2/d^2 +1)] --------> 1

from I

a/b = c/d
squaring both sides
a^2/b^2 = c^2/d^2
putting above in 1 and simplifying

b^2[(c^2/d^2) + 1] = d^2[(c^2/d^2 +1)]
simplifying

b^2 = d^2
or |b| = |d|
=> |a| = |c|

therefore points are equidistant from (0,0) or Origin.
_________________
==============================================
Do not answer without sharing the reasoning behind ur choice
-----------------------------------------------------------
Working on my weakness : GMAT Verbal
------------------------------------------------------------
Ask:
Why, What, How, When, Where, Who
==============================================
Intern  Joined: 27 May 2009
Posts: 5
Re: In the rectangular coordinate system, are the points (a,  [#permalink]

### Show Tags

1
in order for the points to be equidistant

a2 + b2 = c2+ d2 -----> eq X

1--> insufficent (has already been discussed)
2--> insufficent (has already been discussed)

combining both,
equation 2 can be written as a+b = c+d

eq1 a/b = c/d
a+b/b = c+d/d, from eq 1 from b=d ----3

similarly, b/a = d/c, a+b/a = d+c/c from eq 1 a = c ----4

plug in values of a, b in eq X... it satifies.

Hence points are equidistant. Answer is C
Director  Status: Apply - Last Chance
Affiliations: IIT, Purdue, PhD, TauBetaPi
Joined: 18 Jul 2010
Posts: 603
Schools: Wharton, Sloan, Chicago, Haas
WE 1: 8 years in Oil&Gas
Re: ManhttanGMAT Practice CAT  [#permalink]

### Show Tags

Bunuel, had condition (2) simply said a+b=c+d (instead of the squares and square root) how would have the answer changed?

Also in the current question - is a^2+b^2=c^2+d^2?
When I square both sides of (2), I get a^2+b^2+2sqrt(a^2b^2)=c^2+d^2+2sqrt(c^2d^2)
so if ab=cd then this is satisfied. however (1) only gives me ad=bc, how do I infer ab=cd from that? I am following a different process, but I should end up with the same answer. Not sure where am I wrong?
_________________
Consider kudos, they are good for health
Manager  Joined: 17 Mar 2010
Posts: 139
Re: ManhttanGMAT Practice CAT  [#permalink]

### Show Tags

I have a question here bunuel. How did you get a = c * x and b= d*x??

Because from this it means that x = b/d = a/c

Can you please explain??
Math Expert V
Joined: 02 Sep 2009
Posts: 55274
Re: ManhttanGMAT Practice CAT  [#permalink]

### Show Tags

1
1
amitjash wrote:
I have a question here bunuel. How did you get a = c * x and b= d*x??

Because from this it means that x = b/d = a/c

Can you please explain??

It's the same: $$\frac{b}{d} = \frac{a}{c}$$ --> $$bc=ad$$--> $$\frac{c}{d}=\frac{a}{b}$$.

Given: $$\frac{a}{b}=\frac{c}{d}=\frac{cx}{dx}$$ (as the ratios are equal then there exist some $$x$$ for which $$a=cx$$ and $$b=dx$$).
_________________
Manager  Joined: 19 Aug 2010
Posts: 66
Re: points equidistant from origin?  [#permalink]

### Show Tags

(1) knowing these proportions does not help me solve it, because for example if 3/1 = 9/3 , point (a,b) will be closer to the origin than point (b,c)

(2) this statement tells that |a|+|b|=|c|+|d| , which is still not sufficient because we lack information about the correlation between |a| and |b|,and |c|and|d|.

But if we combine the two statements together we will have this correlation from statement (1) and then both statements taken together will be sufficient.

Answer should be C.
What is the OG answer?
Retired Moderator Joined: 02 Sep 2010
Posts: 759
Location: London
Re: points equidistant from origin?  [#permalink]

### Show Tags

4
1
Orange08 wrote:
In the rectangular coordinate system, are the points (a, b) and (c, d) equidistant from the origin?

a. $$a/b = c/d$$

b. $$\sqrt{a^2}+\sqrt{b^2} = \sqrt{c^2} + \sqrt{d^2}$$

Distance of $$(x,y)$$ from origin is $$\sqrt{x^2+y^2}$$
So we need to answer $$\sqrt{a^2+b^2}=\sqrt{c^2+d^2}$$ ?

(1) a/b=c/d ... doesnt really help in proving or disproving. Insufficient

(2) This is equivalent to saying $$|a|+|b|=|c|+|d|$$. Again insufficient to say anything about the statement we have.

(1+2) a/c=b/d=x say (needs, c,d to be non zero)

a = cx
b = dx

|a|+|b|=|c|+|d|
|cx| - |c| = |d| - |dx|
|c|(|x|-1)=|d|(1-|x|)
(|c|+|d|)(|x|-1)=0
Since c,d are non-zero means |x|=1
So either a=c & b=d OR a=-c or b=-d
Either case a^2=c^2 and b^2=d^2
Hence $$\sqrt{a^2+b^2}=\sqrt{c^2+d^2}$$
Sufficient

Answer is (c)
_________________
Veritas Prep GMAT Instructor D
Joined: 16 Oct 2010
Posts: 9246
Location: Pune, India
Re: Difficult Geometry DS Problem  [#permalink]

### Show Tags

12
7
abmyers wrote:
In the rectangular coordinate system, are the points (a, b) and (c, d) equidistant from the origin?

(1) a/b = c/d

(2) $$\sqrt{a^2}+\sqrt{b^2} = \sqrt{c^2} + \sqrt{d^2}$$

A. Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient.
B. Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient.
C. Both statements TOGETHER are sufficient, but NEITHER one ALONE is sufficient.
D. EACH statement ALONE is sufficient.
E. Statements (1) and (2) TOGETHER are NOT sufficient.

You can take values to solve this question quickly:

Statement 1: a/b = c/d
(a,b) and (c,d) may be equidistant from the origin e.g. (1, 1) and (-1, -1) or they may not be e.g. (1, 1) and (2, 2). Not sufficient.

Statement 2: $$\sqrt{a^2}+\sqrt{b^2} = \sqrt{c^2} + \sqrt{d^2}$$
That is, |a|+|b|=|c|+|d|
(a,b) and (c,d) may be equidistant from the origin e.g. (1, 3) and (-1, -3) or they may not be e.g. (1, 3) and (2, 2)

Using both together, |a|+|b|=|c|+|d| and a/b = c/d.
This means that if a/c = 1/2, c/d cannot be 2/4 or -3/-6 etc. c/d has to be either 1/2 or (-1)/(-2). Similarly, if a/b = (-1)/2, c/d = (-1)/2 or 1/(-2))
Any pair of such points will be equidistant. Answer (C).
_________________
Karishma
Veritas Prep GMAT Instructor

Learn more about how Veritas Prep can help you achieve a great GMAT score by checking out their GMAT Prep Options >
Manager  Joined: 18 Aug 2010
Posts: 79
Re: In the rectangular coordinate system, are the points (a,  [#permalink]

### Show Tags

Official explanation says:
"If we know the proportion of a to b is the same as c to d and that |a| + |b| = |c| + |d|, then it must be the case that |a| = |c| and |b| = |d| ?

could someone elaborate how we are supposed to know |a| = |c| and |b| = |d|? a bit vague statement for me

thanks for responses
Director  Status: -=Given to Fly=-
Joined: 04 Jan 2011
Posts: 799
Location: India
Concentration: Leadership, Strategy
Schools: Haas '18, Kelley '18
GMAT 1: 650 Q44 V37 GMAT 2: 710 Q48 V40 GMAT 3: 750 Q51 V40 GPA: 3.5
WE: Education (Education)
Re: In the rectangular coordinate system, are the points (a,  [#permalink]

### Show Tags

3
1
tinki wrote:
Official explanation says:
"If we know the proportion of a to b is the same as c to d and that |a| + |b| = |c| + |d|, then it must be the case that |a| = |c| and |b| = |d| ?

could someone elaborate how we are supposed to know |a| = |c| and |b| = |d|? a bit vague statement for me

thanks for responses

a/b=c/d <---- Equation 1

|a|+|b|=|c|+|d|

Add 1 to both sides of Equation 1

(a+b)/b=(c+d)/d

Now a+b=c+d => 1/b=1/d

Thus, b=d
Similarly,
b/a=d/c
Adding 1 to both sides of above equation:
(b+a)/a=(d+c)/c
a+b=d+c => 1/a=1/c
Therefore a=c
_________________
Math Expert V
Joined: 02 Sep 2009
Posts: 55274
Re: In the rectangular coordinate system, are the points (a,  [#permalink]

### Show Tags

17
1
tinki wrote:
Official explanation says:
"If we know the proportion of a to b is the same as c to d and that |a| + |b| = |c| + |d|, then it must be the case that |a| = |c| and |b| = |d| ?

could someone elaborate how we are supposed to know |a| = |c| and |b| = |d|? a bit vague statement for me

thanks for responses

In the rectangular coordinate system, are the points (a, b) and (c, d) equidistant from the origin?

Distance between the point A (x,y) and the origin can be found by the formula: $$D=\sqrt{x^2+y^2}$$.

So we are asked whether $$\sqrt{a^2+b^2}=\sqrt{c^2+d^2}$$? Or whether $$a^2+b^2=c^2+d^2$$?

(1) $$\frac{a}{b}=\frac{c}{d}$$ --> $$a=cx$$ and $$b=dx$$, for some non-zero $$x$$. Not sufficient.

(2) $$\sqrt{a^2}+\sqrt{b^2}=\sqrt{c^2} +\sqrt{d^2}$$ --> $$|a|+|b|=|c|+|d|$$. Not sufficient.

(1)+(2) From (1) $$a=cx$$ and $$b=dx$$, substitute this in (2): $$|cx|+|dx|=|c|+|d|$$ --> $$|x|(|c|+|d|)=|c|+|d|$$ --> $$|x|=1$$ (another solution $$|c|+|d|=0$$ is not possible as $$d$$ in (1) given in denominator and can not be zero, so $$d\neq{0}$$ --> $$|c|+|d|>0$$) --> now, as $$|x|=1$$ and $$a=cx$$ and $$b=dx$$, then $$|a|=|c|$$ and $$|b|=|d|$$ --> square this equations: $$a^2=c^2$$ and $$b^2=d^2$$ --> add them: $$a^2+b^2=c^2+d^2$$. Sufficient.

Answer: C.
_________________
Manager  Joined: 18 Aug 2010
Posts: 79
Re: In the rectangular coordinate system, are the points (a,  [#permalink]

### Show Tags

1
Bunuel wrote:
tinki wrote:
Official explanation says:
"If we know the proportion of a to b is the same as c to d and that |a| + |b| = |c| + |d|, then it must be the case that |a| = |c| and |b| = |d| ?

could someone elaborate how we are supposed to know |a| = |c| and |b| = |d|? a bit vague statement for me

thanks for responses

In the rectangular coordinate system, are the points (a, b) and (c, d) equidistant from the origin?

Distance between the point A (x,y) and the origin can be found by the formula: $$D=\sqrt{x^2+y^2}$$.

So we are asked whether $$\sqrt{a^2+b^2}=\sqrt{c^2+d^2}$$? Or whether $$a^2+b^2=c^2+d^2$$?

(1) $$\frac{a}{b}=\frac{c}{d}$$ --> $$a=cx$$ and $$b=dx$$, for some non-zero $$x$$. Not sufficient.

(2) $$\sqrt{a^2}+\sqrt{b^2}=\sqrt{c^2} +\sqrt{d^2}$$ --> $$|a|+|b|=|c|+|d|$$. Not sufficient.

(1)+(2) From (1) $$a=cx$$ and $$b=dx$$, substitute this in (2): $$|cx|+|dx|=|c|+|d|$$ --> $$|x|(|c|+|d|)=|c|+|d|$$ --> $$|x|=1$$ (another solution $$|c|+|d|=0$$ is not possible as $$d$$ in (1) given in denominator and can not be zero, so $$d\neq{0}$$ --> $$|c|+|d|>0$$) --> now, as $$|x|=1$$ and $$a=cx$$ and $$b=dx$$, then $$|a|=|c|$$ and $$|b|=|d|$$ --> square this equations: $$a^2=c^2$$ and $$b^2=d^2$$ --> add them: $$a^2+b^2=c^2+d^2$$. Sufficient.

Answer: C.

your explanation is great as always ! thaaanks
+ Kudo
Math Expert V
Joined: 02 Sep 2009
Posts: 55274
Re: In the rectangular coordinate system, are the points (a,  [#permalink]

### Show Tags

AmrithS wrote:
tinki wrote:
Official explanation says:
"If we know the proportion of a to b is the same as c to d and that |a| + |b| = |c| + |d|, then it must be the case that |a| = |c| and |b| = |d| ?

could someone elaborate how we are supposed to know |a| = |c| and |b| = |d|? a bit vague statement for me

thanks for responses

a/b=c/d <---- Equation 1

|a|+|b|=|c|+|d|

Add 1 to both sides of Equation 1

(a+b)/b=(c+d)/d

Now a+b=c+d => 1/b=1/d

Thus, b=d
Similarly,
b/a=d/c
Adding 1 to both sides of above equation:
(b+a)/a=(d+c)/c
a+b=d+c => 1/a=1/c
Therefore a=c

No that's not correct.

|a|+|b|=|c|+|d| doesn't mean that a+b=c+d (consider a=b=1 and c=d=-1). So from |a|+|b|=|c|+|d| and a/b=c/d we can not derive that a=c and b=d. What we can derive is that |a|=|c| and |b|=|d|. Refer to my post above for complete solution.
_________________
Intern  Joined: 20 Dec 2011
Posts: 10
Location: United States
GMAT 1: 760 Q50 V42 Re: In the rectangular coordinate system, are the points (a,  [#permalink]

### Show Tags

1
Here's a simpler solution......

We need to prove a^2 + d^2 = c^2 + b^2

Simpler way is to rearrange statement 2 viz. |a| + |b| = |c| + |d| as
1. |a| - |d| = |c| - |b| and then square both sides. We get -
2. a^2 + d^2 - 2*|a|*|d| = c^2 + b^2 - 2*|c|*|b|.

Since ad = bc as per statement 1,

3. |ad| = |bc| => |a|.|d| = |b|.|c| (Rule -> Abs of Product = Product of Abs)

So we can cancel the third term out from both sides of equation 2. to get the desired equation

HTH
Intern  Joined: 27 Nov 2011
Posts: 7
Location: India
Concentration: Technology, Marketing
GMAT 1: 660 Q47 V34 GMAT 2: 710 Q47 V41 WE: Consulting (Consulting)
Re: ManhttanGMAT Practice CAT  [#permalink]

### Show Tags

Bunuel wrote:
nsp007 wrote:
In the rectangular coordinate system, are the points (a, b) and (c, d) equidistant from the origin?

(1) a/b = c/d

(2) $$\sqrt{a^2}+ \sqrt{b^2} = \sqrt{c^2} + \sqrt{d^2}$$

Will post OA later.

In the rectangular coordinate system, are the points (a, b) and (c, d) equidistant from the origin?

Distance between the point A (x,y) and the origin can be found by the formula: $$D=\sqrt{x^2+y^2}$$.

So we are asked whether $$\sqrt{a^2+b^2}=\sqrt{c^2+d^2}$$? Or whether $$a^2+b^2=c^2+d^2$$?

(1) $$\frac{a}{b}=\frac{c}{d}$$ --> $$a=cx$$ and $$b=dx$$, for some non-zero $$x$$. Not sufficient.

(2) $$\sqrt{a^2}+\sqrt{b^2}=\sqrt{c^2} +\sqrt{d^2}$$ --> $$|a|+|b|=|c|+|d|$$. Not sufficient.

(1)+(2) From (1) $$a=cx$$ and $$b=dx$$, substitute this in (2): $$|cx|+|dx|=|c|+|d|$$ --> $$|x|(|c|+|d|)=|c|+|d|$$ --> $$|x|=1$$ (another solution $$|c|+|d|=0$$ is not possible as $$d$$ in (1) given in denominator and can not be zero, so $$d\neq{0}$$ --> $$|c|+|d|>0$$) --> now, as $$|x|=1$$ and $$a=cx$$ and $$b=dx$$, then $$|a|=|c|$$ and $$|b|=|d|$$ --> square this equations: $$a^2=c^2$$ and $$b^2=d^2$$ --> add them: $$a^2+b^2=c^2+d^2$$. Sufficient.

Answer: C.

I am getting a different final result for answer (C). Here is my approach:
$$\sqrt{a^2} - \sqrt{d^2} = \sqrt{c^2} - \sqrt{b^2}$$ ----from statement (2)

Squaring both sides

$$a^2 + d^2 - 2\sqrt{a^2*d^2} = c^2 + b^2 - 2\sqrt{b^2*c^2}$$

from statement (1) we know that ad=bc --> a^2*d^2 = b^2*c^2

Cancelling last term of both sides, we get

a^2 + d^2 = c^2 + b^2
Thus, a^2 - b^2 = c^2 - d^2

Not able to figure out where I went wrong. Please suggest!

Thanks Re: ManhttanGMAT Practice CAT   [#permalink] 27 May 2012, 23:56

Go to page    1   2    Next  [ 40 posts ]

Display posts from previous: Sort by

# In the rectangular coordinate system, are the points (a,

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.

#### MBA Resources  