Last visit was: 27 Mar 2025, 23:59 It is currently 27 Mar 2025, 23:59
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
mbaMission
Joined: 01 Aug 2008
Last visit: 15 Jul 2009
Posts: 84
Own Kudos:
564
 [242]
Given Kudos: 2
 Q47  V21
Posts: 84
Kudos: 564
 [242]
17
Kudos
Add Kudos
225
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 27 March 2025
Posts: 100,115
Own Kudos:
Given Kudos: 92,748
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 100,115
Kudos: 711,444
 [53]
26
Kudos
Add Kudos
27
Bookmarks
Bookmark this Post
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 27 Mar 2025
Posts: 15,835
Own Kudos:
72,330
 [38]
Given Kudos: 461
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 15,835
Kudos: 72,330
 [38]
26
Kudos
Add Kudos
11
Bookmarks
Bookmark this Post
General Discussion
User avatar
GMAT TIGER
Joined: 29 Aug 2007
Last visit: 17 Aug 2011
Posts: 1,013
Own Kudos:
1,762
 [8]
Given Kudos: 19
Posts: 1,013
Kudos: 1,762
 [8]
3
Kudos
Add Kudos
5
Bookmarks
Bookmark this Post
mbaMission
In the rectangular coordinate system, are the points (a, b) and (c, d) equidistant from the origin?

(1) a/b = c/d
(2) (a^2)^(1/2) + (b^2)^(1/2) = (c^2)^(1/2) + (d^2)^(1/2)

(1) If a/b = c/d, a and b could be 100 and c and d could be 1 or a, b, c and d could be 1. NSF.

(2) If (a^2)^(1/2) + (b^2)^(1/2) = (c^2)^(1/2) + (d^2)^(1/2), then a+b = c+d. In this case, if a = 9 and b = 1, and c =d=5, a+b = c+d is true. but they have different distance.NSF.

From 1 and 2, a must be equal to c and b must be equal to d. So Suff.

Thats C.
avatar
mjGMAT
Joined: 27 May 2009
Last visit: 05 Jun 2009
Posts: 3
Own Kudos:
1
 [1]
Posts: 3
Kudos: 1
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
in order for the points to be equidistant

a2 + b2 = c2+ d2 -----> eq X

1--> insufficent (has already been discussed)
2--> insufficent (has already been discussed)

combining both,
equation 2 can be written as a+b = c+d

eq1 a/b = c/d
a+b/b = c+d/d, from eq 1 from b=d ----3

similarly, b/a = d/c, a+b/a = d+c/c from eq 1 a = c ----4


plug in values of a, b in eq X... it satifies.

Hence points are equidistant. Answer is C
User avatar
amitjash
Joined: 17 Mar 2010
Last visit: 22 Feb 2017
Posts: 87
Own Kudos:
639
 [1]
Given Kudos: 9
Posts: 87
Kudos: 639
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
I have a question here bunuel. How did you get a = c * x and b= d*x??

Because from this it means that x = b/d = a/c

Can you please explain??
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 27 March 2025
Posts: 100,115
Own Kudos:
711,444
 [2]
Given Kudos: 92,748
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 100,115
Kudos: 711,444
 [2]
1
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
amitjash
I have a question here bunuel. How did you get a = c * x and b= d*x??

Because from this it means that x = b/d = a/c

Can you please explain??

It's the same: \(\frac{b}{d} = \frac{a}{c}\) --> \(bc=ad\)--> \(\frac{c}{d}=\frac{a}{b}\).

Given: \(\frac{a}{b}=\frac{c}{d}=\frac{cx}{dx}\) (as the ratios are equal then there exist some \(x\) for which \(a=cx\) and \(b=dx\)).
User avatar
shrouded1
User avatar
Retired Moderator
Joined: 02 Sep 2010
Last visit: 29 Apr 2018
Posts: 609
Own Kudos:
3,086
 [14]
Given Kudos: 25
Location: London
 Q51  V41
Products:
Posts: 609
Kudos: 3,086
 [14]
9
Kudos
Add Kudos
5
Bookmarks
Bookmark this Post
Orange08
In the rectangular coordinate system, are the points (a, b) and (c, d) equidistant from the origin?

a. \(a/b = c/d\)

b. \(\sqrt{a^2}+\sqrt{b^2} = \sqrt{c^2} + \sqrt{d^2}\)

Distance of \((x,y)\) from origin is \(\sqrt{x^2+y^2}\)
So we need to answer \(\sqrt{a^2+b^2}=\sqrt{c^2+d^2}\) ?

(1) a/b=c/d ... doesnt really help in proving or disproving. Insufficient

(2) This is equivalent to saying \(|a|+|b|=|c|+|d|\). Again insufficient to say anything about the statement we have.

(1+2) a/c=b/d=x say (needs, c,d to be non zero)

a = cx
b = dx

|a|+|b|=|c|+|d|
|cx| - |c| = |d| - |dx|
|c|(|x|-1)=|d|(1-|x|)
(|c|+|d|)(|x|-1)=0
Since c,d are non-zero means |x|=1
So either a=c & b=d OR a=-c or b=-d
Either case a^2=c^2 and b^2=d^2
Hence \(\sqrt{a^2+b^2}=\sqrt{c^2+d^2}\)
Sufficient

Answer is (c)
User avatar
tinki
Joined: 18 Aug 2010
Last visit: 03 Feb 2012
Posts: 51
Own Kudos:
Given Kudos: 22
Posts: 51
Kudos: 116
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Official explanation says:
"If we know the proportion of a to b is the same as c to d and that |a| + |b| = |c| + |d|, then it must be the case that |a| = |c| and |b| = |d| ?

could someone elaborate how we are supposed to know |a| = |c| and |b| = |d|? a bit vague statement for me

thanks for responses
User avatar
AmrithS
Joined: 04 Jan 2011
Last visit: 12 Jun 2021
Posts: 755
Own Kudos:
442
 [5]
Given Kudos: 78
Status:-=Given to Fly=-
Location: India
Concentration: Leadership, Strategy
GMAT 1: 650 Q44 V37
GMAT 2: 710 Q48 V40
GMAT 3: 750 Q51 V40
GPA: 3.5
WE:Education (Education)
GMAT 3: 750 Q51 V40
Posts: 755
Kudos: 442
 [5]
3
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
tinki
Official explanation says:
"If we know the proportion of a to b is the same as c to d and that |a| + |b| = |c| + |d|, then it must be the case that |a| = |c| and |b| = |d| ?

could someone elaborate how we are supposed to know |a| = |c| and |b| = |d|? a bit vague statement for me

thanks for responses
a/b=c/d <---- Equation 1

|a|+|b|=|c|+|d|

Add 1 to both sides of Equation 1

(a+b)/b=(c+d)/d

Now a+b=c+d => 1/b=1/d

Thus, b=d
Similarly,
b/a=d/c
Adding 1 to both sides of above equation:
(b+a)/a=(d+c)/c
a+b=d+c => 1/a=1/c
Therefore a=c
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 27 March 2025
Posts: 100,115
Own Kudos:
Given Kudos: 92,748
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 100,115
Kudos: 711,444
 [18]
17
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
tinki
Official explanation says:
"If we know the proportion of a to b is the same as c to d and that |a| + |b| = |c| + |d|, then it must be the case that |a| = |c| and |b| = |d| ?

could someone elaborate how we are supposed to know |a| = |c| and |b| = |d|? a bit vague statement for me

thanks for responses

In the rectangular coordinate system, are the points (a, b) and (c, d) equidistant from the origin?

Distance between the point A (x,y) and the origin can be found by the formula: \(D=\sqrt{x^2+y^2}\).

So we are asked whether \(\sqrt{a^2+b^2}=\sqrt{c^2+d^2}\)? Or whether \(a^2+b^2=c^2+d^2\)?

(1) \(\frac{a}{b}=\frac{c}{d}\) --> \(a=cx\) and \(b=dx\), for some non-zero \(x\). Not sufficient.

(2) \(\sqrt{a^2}+\sqrt{b^2}=\sqrt{c^2} +\sqrt{d^2}\) --> \(|a|+|b|=|c|+|d|\). Not sufficient.

(1)+(2) From (1) \(a=cx\) and \(b=dx\), substitute this in (2): \(|cx|+|dx|=|c|+|d|\) --> \(|x|(|c|+|d|)=|c|+|d|\) --> \(|x|=1\) (another solution \(|c|+|d|=0\) is not possible as \(d\) in (1) given in denominator and can not be zero, so \(d\neq{0}\) --> \(|c|+|d|>0\)) --> now, as \(|x|=1\) and \(a=cx\) and \(b=dx\), then \(|a|=|c|\) and \(|b|=|d|\) --> square this equations: \(a^2=c^2\) and \(b^2=d^2\) --> add them: \(a^2+b^2=c^2+d^2\). Sufficient.

Answer: C.
User avatar
tinki
Joined: 18 Aug 2010
Last visit: 03 Feb 2012
Posts: 51
Own Kudos:
116
 [1]
Given Kudos: 22
Posts: 51
Kudos: 116
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
tinki
Official explanation says:
"If we know the proportion of a to b is the same as c to d and that |a| + |b| = |c| + |d|, then it must be the case that |a| = |c| and |b| = |d| ?

could someone elaborate how we are supposed to know |a| = |c| and |b| = |d|? a bit vague statement for me

thanks for responses

In the rectangular coordinate system, are the points (a, b) and (c, d) equidistant from the origin?

Distance between the point A (x,y) and the origin can be found by the formula: \(D=\sqrt{x^2+y^2}\).

So we are asked whether \(\sqrt{a^2+b^2}=\sqrt{c^2+d^2}\)? Or whether \(a^2+b^2=c^2+d^2\)?

(1) \(\frac{a}{b}=\frac{c}{d}\) --> \(a=cx\) and \(b=dx\), for some non-zero \(x\). Not sufficient.

(2) \(\sqrt{a^2}+\sqrt{b^2}=\sqrt{c^2} +\sqrt{d^2}\) --> \(|a|+|b|=|c|+|d|\). Not sufficient.

(1)+(2) From (1) \(a=cx\) and \(b=dx\), substitute this in (2): \(|cx|+|dx|=|c|+|d|\) --> \(|x|(|c|+|d|)=|c|+|d|\) --> \(|x|=1\) (another solution \(|c|+|d|=0\) is not possible as \(d\) in (1) given in denominator and can not be zero, so \(d\neq{0}\) --> \(|c|+|d|>0\)) --> now, as \(|x|=1\) and \(a=cx\) and \(b=dx\), then \(|a|=|c|\) and \(|b|=|d|\) --> square this equations: \(a^2=c^2\) and \(b^2=d^2\) --> add them: \(a^2+b^2=c^2+d^2\). Sufficient.

Answer: C.

your explanation is great as always ! thaaanks
+ Kudo
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 27 March 2025
Posts: 100,115
Own Kudos:
Given Kudos: 92,748
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 100,115
Kudos: 711,444
Kudos
Add Kudos
Bookmarks
Bookmark this Post
AmrithS
tinki
Official explanation says:
"If we know the proportion of a to b is the same as c to d and that |a| + |b| = |c| + |d|, then it must be the case that |a| = |c| and |b| = |d| ?

could someone elaborate how we are supposed to know |a| = |c| and |b| = |d|? a bit vague statement for me

thanks for responses
a/b=c/d <---- Equation 1

|a|+|b|=|c|+|d|

Add 1 to both sides of Equation 1

(a+b)/b=(c+d)/d

Now a+b=c+d => 1/b=1/d

Thus, b=d
Similarly,
b/a=d/c
Adding 1 to both sides of above equation:
(b+a)/a=(d+c)/c
a+b=d+c => 1/a=1/c
Therefore a=c

No that's not correct.

|a|+|b|=|c|+|d| doesn't mean that a+b=c+d (consider a=b=1 and c=d=-1). So from |a|+|b|=|c|+|d| and a/b=c/d we can not derive that a=c and b=d. What we can derive is that |a|=|c| and |b|=|d|. Refer to my post above for complete solution.
avatar
ardsouza
Joined: 20 Dec 2011
Last visit: 06 May 2012
Posts: 10
Own Kudos:
13
 [2]
Location: United States
GMAT 1: 760 Q50 V42
GMAT 1: 760 Q50 V42
Posts: 10
Kudos: 13
 [2]
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Here's a simpler solution......

We need to prove a^2 + d^2 = c^2 + b^2

Simpler way is to rearrange statement 2 viz. |a| + |b| = |c| + |d| as
1. |a| - |d| = |c| - |b| and then square both sides. We get -
2. a^2 + d^2 - 2*|a|*|d| = c^2 + b^2 - 2*|c|*|b|.

Since ad = bc as per statement 1,

3. |ad| = |bc| => |a|.|d| = |b|.|c| (Rule -> Abs of Product = Product of Abs)

So we can cancel the third term out from both sides of equation 2. to get the desired equation

HTH
avatar
kunalbh19
Joined: 27 Nov 2011
Last visit: 20 Jun 2012
Posts: 5
Own Kudos:
Given Kudos: 4
Location: India
Concentration: Technology, Marketing
GMAT 1: 660 Q47 V34
GMAT 2: 710 Q47 V41
WE:Consulting (Consulting)
GMAT 2: 710 Q47 V41
Posts: 5
Kudos: 105
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
nsp007
In the rectangular coordinate system, are the points (a, b) and (c, d) equidistant from the origin?

(1) a/b = c/d

(2) \(\sqrt{a^2}+ \sqrt{b^2} = \sqrt{c^2} + \sqrt{d^2}\)

Will post OA later.


In the rectangular coordinate system, are the points (a, b) and (c, d) equidistant from the origin?

Distance between the point A (x,y) and the origin can be found by the formula: \(D=\sqrt{x^2+y^2}\).

So we are asked whether \(\sqrt{a^2+b^2}=\sqrt{c^2+d^2}\)? Or whether \(a^2+b^2=c^2+d^2\)?

(1) \(\frac{a}{b}=\frac{c}{d}\) --> \(a=cx\) and \(b=dx\), for some non-zero \(x\). Not sufficient.

(2) \(\sqrt{a^2}+\sqrt{b^2}=\sqrt{c^2} +\sqrt{d^2}\) --> \(|a|+|b|=|c|+|d|\). Not sufficient.

(1)+(2) From (1) \(a=cx\) and \(b=dx\), substitute this in (2): \(|cx|+|dx|=|c|+|d|\) --> \(|x|(|c|+|d|)=|c|+|d|\) --> \(|x|=1\) (another solution \(|c|+|d|=0\) is not possible as \(d\) in (1) given in denominator and can not be zero, so \(d\neq{0}\) --> \(|c|+|d|>0\)) --> now, as \(|x|=1\) and \(a=cx\) and \(b=dx\), then \(|a|=|c|\) and \(|b|=|d|\) --> square this equations: \(a^2=c^2\) and \(b^2=d^2\) --> add them: \(a^2+b^2=c^2+d^2\). Sufficient.

Answer: C.

I am getting a different final result for answer (C). Here is my approach:
\(\sqrt{a^2} - \sqrt{d^2} = \sqrt{c^2} - \sqrt{b^2}\) ----from statement (2)

Squaring both sides

\(a^2 + d^2 - 2\sqrt{a^2*d^2} = c^2 + b^2 - 2\sqrt{b^2*c^2}\)

from statement (1) we know that ad=bc --> a^2*d^2 = b^2*c^2

Cancelling last term of both sides, we get

a^2 + d^2 = c^2 + b^2
Thus, a^2 - b^2 = c^2 - d^2

Not able to figure out where I went wrong. Please suggest!

Thanks
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 27 Mar 2025
Posts: 15,835
Own Kudos:
Given Kudos: 461
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 15,835
Kudos: 72,330
Kudos
Add Kudos
Bookmarks
Bookmark this Post
kunalbh19

I am getting a different final result for answer (C). Here is my approach:
\(\sqrt{a^2} - \sqrt{d^2} = \sqrt{c^2} - \sqrt{b^2}\) ----from statement (2)

Squaring both sides

\(a^2 + d^2 - 2\sqrt{a^2*d^2} = c^2 + b^2 - 2\sqrt{b^2*c^2}\)

from statement (1) we know that ad=bc --> a^2*d^2 = b^2*c^2

Cancelling last term of both sides, we get

a^2 + d^2 = c^2 + b^2
Thus, a^2 - b^2 = c^2 - d^2

Not able to figure out where I went wrong. Please suggest!

Thanks

There is nothing wrong with your approach. The relation you have got holds (a^2 - b^2 = c^2 - d^2).
But if you start doing algebraic manipulations on the starting point without an eye on what you need to achieve at the end, you may not obtain the result you want. You can manipulate an expression in many ways to get seemingly different results.

Notice that Bunuel got a^2 = c^2 and b^2 = d^2. He could have chosen to add them as
a^2 + d^2 = c^2 + b^2 (or subtract them) which is same as your result. But he chose to add them as a^2 + b^2 = c^2 + d^2 to get the expression he desired. Using the same two expressions, Bunuel arrived at a^2 + b^2 = c^2 + d^2 and you arrived at a^2 - b^2 = c^2 - d^2, both of which are correct. But only one of them (a^2 + b^2 = c^2 + d^2) helps you answer the question directly since you know that the distance of a point (a, b) is given by square root of (a^2 + b^2).

Try to find the relation between individual variables instead of working on the equations as a whole. Either use number plugging or Bunuel's algebraic approach.
avatar
guitarstrings
Joined: 12 Jul 2012
Last visit: 16 Oct 2012
Posts: 11
Own Kudos:
17
 [2]
Given Kudos: 1
Posts: 11
Kudos: 17
 [2]
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
reagan
Hi there, i was just wondering if the way i do it is correct!

Statement 1: insuff
Statement 2 : |a|+|b|=|c|+|d|

Our goal is to prove that a^2 + b^2 = c^2 + d^2

(1+2)

Square both sides in stmt 2.

We have a^2 + b^2 + 2|a||b| = c^2 + d^2 + 2|c||d| ----------- *
From one we know that a/b=c/d, therefore their LHS=RHS and therefore, this condition would allow us to cancel out 2|a||b| from LHS and 2|c||d| from equation *.

Please tell me that i am correct! =)

Reagan

Absolutely, I found this approach much better. Infact I am wondering why we are targetting absolute values in the equation.

(a+b)^2 = a^2+b^2+2ab [no absolute |a|, |b| needed]

From
1) we know ab = cd
2) we know a + b = c + d. and hence (a+b)^2 = (c+d)^2

Combining 1) & 2) we can very well see that a^2+b^2 = c^2+d^2
User avatar
sagarsir
Joined: 28 Dec 2012
Last visit: 11 Oct 2023
Posts: 88
Own Kudos:
143
 [1]
Given Kudos: 94
Location: India
Concentration: Strategy, Finance
WE:Engineering (Energy)
Posts: 88
Kudos: 143
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
1+2:

1) Ensures that the lines joining each of the two points to origin have same slope.
2) Ensures that absicca and ordinates correspondingly have equal magnitudes.
{If one line has points (a,b) then the other line will have coordinates (ak,bk) but (2) ensures that |k| = 1.}

Hence C.

KUDOS IF YOU LIKE!
User avatar
mun23
Joined: 06 Dec 2012
Last visit: 26 Apr 2013
Posts: 97
Own Kudos:
Given Kudos: 46
Status:struggling with GMAT
Location: Bangladesh
Concentration: Accounting
GMAT Date: 04-06-2013
GPA: 3.65
Posts: 97
Kudos: 1,662
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
nsp007
In the rectangular coordinate system, are the points (a, b) and (c, d) equidistant from the origin?

(1) a/b = c/d

(2) \(\sqrt{a^2}+ \sqrt{b^2} = \sqrt{c^2} + \sqrt{d^2}\)

Will post OA later.


In the rectangular coordinate system, are the points (a, b) and (c, d) equidistant from the origin?

Distance between the point A (x,y) and the origin can be found by the formula: \(D=\sqrt{x^2+y^2}\).

So we are asked whether \(\sqrt{a^2+b^2}=\sqrt{c^2+d^2}\)? Or whether \(a^2+b^2=c^2+d^2\)?

(1) \(\frac{a}{b}=\frac{c}{d}\) --> \(a=cx\) and \(b=dx\), for some non-zero \(x\). Not sufficient.

(2) \(\sqrt{a^2}+\sqrt{b^2}=\sqrt{c^2} +\sqrt{d^2}\) --> \(|a|+|b|=|c|+|d|\). Not sufficient.

(1)+(2) From (1) \(a=cx\) and \(b=dx\), substitute this in (2): \(|cx|+|dx|=|c|+|d|\) --> \(|x|(|c|+|d|)=|c|+|d|\) --> \(|x|=1\) (another solution \(|c|+|d|=0\) is not possible as \(d\) in (1) given in denominator and can not be zero, so \(d\neq{0}\) --> \(|c|+|d|>0\)) --> now, as \(|x|=1\) and \(a=cx\) and \(b=dx\), then \(|a|=|c|\) and \(|b|=|d|\) --> square this equations: \(a^2=c^2\) and \(b^2=d^2\) --> add them: \(a^2+b^2=c^2+d^2\). Sufficient.

Answer: C.
Hi Bunnel
i am not understanding how \(\sqrt{a^2}+\sqrt{b^2}=\sqrt{c^2} +\sqrt{d^2}\) --> \(|a|+|b|=|c|+|d|\)
have come?
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 27 Mar 2025
Posts: 15,835
Own Kudos:
Given Kudos: 461
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 15,835
Kudos: 72,330
Kudos
Add Kudos
Bookmarks
Bookmark this Post
mun23
\(\sqrt{a^2}+\sqrt{b^2}=\sqrt{c^2} +\sqrt{d^2}\) --> \(|a|+|b|=|c|+|d|\)
have come?

By convention, only positive roots are considered (at least in GMAT)

\(\sqrt{4} = 2\) (and not -2)

Similarly, \(\sqrt{a^2} = |a|\) i.e. only the positive value
 1   2   
Moderator:
Math Expert
100115 posts