Last visit was: 10 Jul 2025, 13:40 It is currently 10 Jul 2025, 13:40
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
505-555 Level|   Coordinate Geometry|                     
User avatar
alimad
Joined: 10 Feb 2006
Last visit: 09 Jul 2014
Posts: 466
Own Kudos:
4,240
 [93]
Posts: 466
Kudos: 4,240
 [93]
8
Kudos
Add Kudos
85
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
BrentGMATPrepNow
User avatar
Major Poster
Joined: 12 Sep 2015
Last visit: 13 May 2024
Posts: 6,756
Own Kudos:
34,049
 [17]
Given Kudos: 799
Location: Canada
Expert
Expert reply
Posts: 6,756
Kudos: 34,049
 [17]
10
Kudos
Add Kudos
6
Bookmarks
Bookmark this Post
User avatar
alpha_plus_gamma
Joined: 14 Aug 2007
Last visit: 17 Jun 2010
Posts: 298
Own Kudos:
621
 [9]
Concentration: MC, PE, VC
 Q50  V37
Posts: 298
Kudos: 621
 [9]
6
Kudos
Add Kudos
3
Bookmarks
Bookmark this Post
General Discussion
User avatar
Maple
Joined: 16 Sep 2007
Last visit: 05 May 2009
Posts: 98
Own Kudos:
23
 [7]
Posts: 98
Kudos: 23
 [7]
3
Kudos
Add Kudos
3
Bookmarks
Bookmark this Post
x=3*y-7
convert to (this step is not necessary but I do it out of habit)
y=(x-7)/3

substitute a and b for x and y
1. b=(a-7)/3

b+k=((a+3)-7)/3
substitute equation 1 for b
(a-7)/3+k=((a+3)-7)/3
(a-7)/3+k=(a-4)/3
a-7+3k=a-4
3k=3
k=1

D
User avatar
Fistail
Joined: 03 May 2007
Last visit: 14 Mar 2019
Posts: 330
Own Kudos:
1,276
 [4]
Given Kudos: 7
Concentration: Finance, Economics
Schools:University of Chicago, Wharton School
Posts: 330
Kudos: 1,276
 [4]
1
Kudos
Add Kudos
3
Bookmarks
Bookmark this Post
alimad
In the xy-coordinate system, if (a, b) and (a+3, b+k) are two points on the line defined by the equation
x = 3y - 7, then k =

9
3
7/3
1
1/3

Please provide explaination. Thanks

x = 3y - 7
y = 1/3 (x) + 7/3
[(b+k) - b]/ [(a+3) - a] = 1/3
k/3 = 1/3
k = 1

D.
User avatar
bkk145
Joined: 10 Jun 2007
Last visit: 23 Feb 2014
Posts: 647
Own Kudos:
1,719
 [6]
Posts: 647
Kudos: 1,719
 [6]
1
Kudos
Add Kudos
4
Bookmarks
Bookmark this Post
alimad
In the xy-coordinate system, if (a,b) and (a+3,b+k) are
two points on the line defined by the equation
x = 3y - 7, then k =

9
3
7/3
1
1/3

Please provide explaination. Thanks

slope = (y1-y2)/(x1-x2) = (b+k-b) / (a+3-a) = k/3
y = x/3 + 7/3, so slope = 1/3

k/3 = 1/3
k = 1
User avatar
thevenus
Joined: 17 Mar 2010
Last visit: 17 Dec 2024
Posts: 318
Own Kudos:
1,437
 [3]
Given Kudos: 76
Status:Final Countdown
Location: United States (NY)
GPA: 3.82
WE:Account Management (Retail Banking)
Posts: 318
Kudos: 1,437
 [3]
3
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Substitute a & b in place of x & y resp... in the eqn.
a-3b+7=0------(i)

Substitute a+3 & b+k in the place of x & y resp...we'll get
a+3=3(b+k)-7 or,
a-3b-3k+10=0-------(ii)

points on the same line will satisfy the equation so ,

equating (i)&(ii)
a-3b-3k+10=a-3b+7
k=1

Ans- D
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 10 Jul 2025
Posts: 16,101
Own Kudos:
74,246
 [1]
Given Kudos: 475
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,101
Kudos: 74,246
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
thevenus
Substitute a & b in place of x & y resp... in the eqn.
a-3b+7=0------(i)

Substitute a+3 & b+k in the place of x & y resp...we'll get
a+3=3(b+k)-7 or,
a-3b-3k+10=0-------(ii)

Or note here itself that a - 3b + 7 = 0 so 3 - 3k = 0 giving you k = 1
User avatar
gmatsaga
Joined: 05 Jun 2012
Last visit: 30 Apr 2013
Posts: 106
Own Kudos:
295
 [4]
Given Kudos: 16
Status:Rising GMAT Star
Location: Philippines
Concentration: General Management, Finance
GPA: 3.22
WE:Corporate Finance (Consulting)
Posts: 106
Kudos: 295
 [4]
2
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
thevenus
In the xy-coordinate system, if (a,b) and (a+3, b+k) are two points on the line defined by the equation x=3y-7, then k=?

A. 9
B. 3
C. 7/3
D. 1
E. 1/3


My answer is (D).

Here's my approach:

We are given two points: (a,b) and (a+3,b+k)

We are given an equation of the line: x = 3y - 7

Next step is to convert the equation of the line into slope-intercept form. We will have Y = x/3 + 7/3. Don't forget this step because you might fall into the trap and decide that the slope of the line is 3. This makes the question very GMAT-esque. 8-)

So the slope of the line is 1/3

Now we know that the equation of the slope of the line is given by:

slope = (y2 - y1)/(x2 - x1) ---> Remember, the slope is just "rise" over "run."

That's why we have:

1/3 = [ (b+k) - b ] / [ (a+3) - a]

The two b's will cancel each other in the numerator and so will the two a's in the denominator

We will get 1/3 = k / 3

so 3 / 3 = k

k = 1
User avatar
cyberjadugar
Joined: 29 Mar 2012
Last visit: 28 May 2024
Posts: 266
Own Kudos:
1,672
 [7]
Given Kudos: 23
Location: India
GMAT 1: 640 Q50 V26
GMAT 2: 660 Q50 V28
GMAT 3: 730 Q50 V38
GMAT 3: 730 Q50 V38
Posts: 266
Kudos: 1,672
 [7]
6
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
Hi,

Slope of the line x=3y-7 is 1/3
so, we can equate the slope of the line to the slope of the points = \(\frac {y_2-y_1}{x_2-x_1}\)
or \(\frac {(b+k)-(b)}{(a+3)-a} = \frac 13\)
or \(\frac k3 = \frac 13\)
or k=1,

Answer (D),

Regards,
avatar
wsisback
Joined: 08 Jul 2014
Last visit: 24 Feb 2015
Posts: 1
Given Kudos: 9
Posts: 1
Kudos: 0
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Maple
x=3*y-7
convert to (this step is not necessary but I do it out of habit)
y=(x-7)/3

substitute a and b for x and y
1. b=(a-7)/3

b+k=((a+3)-7)/3
substitute equation 1 for b
(a-7)/3+k=((a+3)-7)/3
(a-7)/3+k=(a-4)/3
a-7+3k=a-4
3k=3
k=1

D
x=3*y-7 is not y=(x-7)/3
instead it is y=(x+7)/3 or y=(1/3)x+(7/3)
since we know (a,b) and (a+3,b+k) belong to the same line, they must have the same slope, 1/3.
[(b+k)-b]/[(a+3)-a]=1/3
k/3=1/3
k=1
User avatar
EMPOWERgmatRichC
User avatar
Major Poster
Joined: 19 Dec 2014
Last visit: 31 Dec 2023
Posts: 21,788
Own Kudos:
12,488
 [4]
Given Kudos: 450
Status:GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Location: United States (CA)
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Expert
Expert reply
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Posts: 21,788
Kudos: 12,488
 [4]
3
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
Hi All,

This question can be solved by TESTing VALUES:

We're given the equation of a line (X = 3Y - 7) and we're told that two points (A, B) and (A+3, B+K) are on this line. We're asked for the value of K.

In graphing questions, it sometimes helps to "visualize" the line better if you write the equation in "slope-intercept" format:

X = 3Y - 7

3Y = X + 7
Y = X/3 + 7/3

For the first co-ordinate, let's try to keep things simple...
X = 0
Y = 7/3

So...
A = 0
B = 7/3

For the second co-ordinate, we have ADD 3 to X....
X = 3
Y = 10/3

So....
A+3 = 3
B+K = 10/3

We know from the first co-ordinate that B = 7/3, so K = 3/3 = 1

Final Answer:
GMAT assassins aren't born, they're made,
Rich
User avatar
LogicGuru1
Joined: 04 Jun 2016
Last visit: 28 May 2024
Posts: 469
Own Kudos:
2,533
 [1]
Given Kudos: 36
GMAT 1: 750 Q49 V43
GMAT 1: 750 Q49 V43
Posts: 469
Kudos: 2,533
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
alimad
In the xy-coordinate system, if (a,b) and (a+3, b+k) are two points on the line defined by the equation x=3y-7, then k=?

A. 9
B. 3
C. 7/3
D. 1
E. 1/3

Our equation is x=3y-7
Lets quickly make it a point intercept form ==> 3y-7=x==>3y=x+7==>\(y=\frac{x}{3}+\frac{7}{3}\)
Now we can see the coefficient of x is \(\frac{1}{3}\), which by definition is the slope
and we know slope =\(\frac{y2-y1}{x2-x1}\)==> \(\frac{1}{3}=\frac{b+k-b}{a+3-a}\)==> 1/3=k/3
therefore k=1

Answer is B
User avatar
JeffTargetTestPrep
User avatar
Target Test Prep Representative
Joined: 04 Mar 2011
Last visit: 05 Jan 2024
Posts: 2,996
Own Kudos:
7,922
 [2]
Given Kudos: 1,646
Status:Head GMAT Instructor
Affiliations: Target Test Prep
Expert
Expert reply
Posts: 2,996
Kudos: 7,922
 [2]
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
alimad
In the xy-coordinate system, if (a,b) and (a+3, b+k) are two points on the line defined by the equation x=3y-7, then k=?

A. 9
B. 3
C. 7/3
D. 1
E. 1/3

Recall that an ordered pair represents a pair of x and y coordinates. Substituting the values from the first ordered pair (a,b) into the equation, we can create the following equation:

a = 3b - 7

Substituting the values from the second ordered pair for x and y into the same equation, we have:

a + 3 = 3(b + k) - 7 → a + 3 = 3b + 3k - 7

If we subtract the first equation from the second, we have:

3 = 3k

1 = k

Answer: D
avatar
OCDianaOC
Joined: 16 Oct 2017
Last visit: 03 Jul 2018
Posts: 32
Own Kudos:
Given Kudos: 60
Posts: 32
Kudos: 37
Kudos
Add Kudos
Bookmarks
Bookmark this Post
EMPOWERgmatRichC
Hi All,

This question can be solved by TESTing VALUES:

We're given the equation of a line (X = 3Y - 7) and we're told that two points (A, B) and (A+3, B+K) are on this line. We're asked for the value of K.

In graphing questions, it sometimes helps to "visualize" the line better if you write the equation in "slope-intercept" format:

X = 3Y - 7

3Y = X + 7
Y = X/3 + 7/3

For the first co-ordinate, let's try to keep things simple...
X = 0
Y = 7/3

So...
A = 0
B = 7/3

For the second co-ordinate, we have ADD 3 to X....
X = 3
Y = 10/3

So....
A+3 = 3
B+K = 10/3

We know from the first co-ordinate that B = 7/3, so K = 3/3 = 1

Final Answer:
GMAT assassins aren't born, they're made,
Rich

Hi Rich, I know the "7/3" came from rewriting to slope-intercept form, but how did you get from "B = 7/3" to "B+K = 10/3"? I know we added 3 to X, but are we adding 3 to Y too?
User avatar
EMPOWERgmatRichC
User avatar
Major Poster
Joined: 19 Dec 2014
Last visit: 31 Dec 2023
Posts: 21,788
Own Kudos:
Given Kudos: 450
Status:GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Location: United States (CA)
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Expert
Expert reply
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Posts: 21,788
Kudos: 12,488
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hi OCDianaOC,

Both co-ordinates have to 'fit' the equation Y = X/3 + 7/3

The first co-ordinate is (A, B).... and I TESTed VALUES and used (0, 7/3) to define that co-ordinate. Remember: A = 0 and B = 7/3

The second co-ordinate is (A+3, B+K).... notice how that's the SAME A and B from the first co-ordinate. Thus, we have to add 3 to A (so 3+0 = 3) and plug in X=3 into the equation to get the value of the Y....

When X=3....
Y = X/3 + 7/3
Y = (3/3) + 7/3)
Y = 10/3

Since the second co-ordinate is (A+3, B+K), our prior work makes the co-ordinate (3, 10/3). From the prior work, we see that B = 7/3...
B + K = 10/3
(7/3) + K = 10/3
K = 10/3 - 7/3 = 3/3 = 1

GMAT assassins aren't born, they're made,
Rich
User avatar
dave13
Joined: 09 Mar 2016
Last visit: 23 Nov 2024
Posts: 1,114
Own Kudos:
1,087
 [1]
Given Kudos: 3,851
Posts: 1,114
Kudos: 1,087
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
gmatsaga
thevenus
In the xy-coordinate system, if (a,b) and (a+3, b+k) are two points on the line defined by the equation x=3y-7, then k=?

A. 9
B. 3
C. 7/3
D. 1
E. 1/3


My answer is (D).

Here's my approach:

We are given two points: (a,b) and (a+3,b+k)

We are given an equation of the line: x = 3y - 7

Next step is to convert the equation of the line into slope-intercept form. We will have Y = x/3 + 7/3. Don't forget this step because you might fall into the trap and decide that the slope of the line is 3. This makes the question very GMAT-esque. 8-)

So the slope of the line is 1/3

Now we know that the equation of the slope of the line is given by:

slope = (y2 - y1)/(x2 - x1) ---> Remember, the slope is just "rise" over "run."

That's why we have:

1/3 = [ (b+k) - b ] / [ (a+3) - a]

The two b's will cancel each other in the numerator and so will the two a's in the denominator

We will get 1/3 = k / 3

so 3 / 3 = k

k = 1

How did you figure out that slope is 1/3 from here Y = x/3 + 7/3 slope is x/3 but how should i know value of X ? :?
User avatar
generis
User avatar
Senior SC Moderator
Joined: 22 May 2016
Last visit: 18 Jun 2022
Posts: 5,293
Own Kudos:
36,928
 [1]
Given Kudos: 9,464
Products:
Expert
Expert reply
Posts: 5,293
Kudos: 36,928
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
alimad
In the xy-coordinate system, if (a,b) and (a+3, b+k) are two points on the line defined by the equation x=3y-7, then k=?

A. 9
B. 3
C. 7/3
D. 1
E. 1/3
\(x = 3y - 7\)

Rewrite in slope-intercept form
\(y = mx + b\)
m = slope, b = y-intercept, thus:
\(3y = x + 7\) =>
\(y = \frac{1}{3}x + \frac{7}{3}\)

Slope = \(\frac{1}{3}\)

Slope is also \(\frac{rise}{run}=\frac{(y_2 - y_1)}{(x_2 - x_1)}\)

We have x-and y-coordinates for two points:
(a,b) and (a+3,b+k)

Set the slope equation equal to the slope value

\(\frac{(b+k)-b}{(a+3)-a}=\frac{1}{3}\)

\(\frac{b+k-b}{a+3-a}=\frac{1}{3}\)

\(\frac{k}{3}=\frac{1}{3}\)

\(3k = 3\)

\(k = 1\)

Answer D
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 10 Jul 2025
Posts: 16,101
Own Kudos:
Given Kudos: 475
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,101
Kudos: 74,246
Kudos
Add Kudos
Bookmarks
Bookmark this Post
dave13
gmatsaga
thevenus
In the xy-coordinate system, if (a,b) and (a+3, b+k) are two points on the line defined by the equation x=3y-7, then k=?

A. 9
B. 3
C. 7/3
D. 1
E. 1/3


My answer is (D).

Here's my approach:

We are given two points: (a,b) and (a+3,b+k)

We are given an equation of the line: x = 3y - 7

Next step is to convert the equation of the line into slope-intercept form. We will have Y = x/3 + 7/3. Don't forget this step because you might fall into the trap and decide that the slope of the line is 3. This makes the question very GMAT-esque. 8-)

So the slope of the line is 1/3

Now we know that the equation of the slope of the line is given by:

slope = (y2 - y1)/(x2 - x1) ---> Remember, the slope is just "rise" over "run."

That's why we have:

1/3 = [ (b+k) - b ] / [ (a+3) - a]

The two b's will cancel each other in the numerator and so will the two a's in the denominator

We will get 1/3 = k / 3

so 3 / 3 = k

k = 1

How did you figure out that slope is 1/3 from here Y = x/3 + 7/3 slope is x/3 but how should i know value of X ? :?

The equation of a line is
y = mx + c
where m is the slope and c is the y-intercept.
So the equation looks like this
y = 2x + 4 (m = 2, c = 4)
y = x/3 + 5 (m = 1/3, c = 5)
etc
avatar
manjot123
Joined: 29 Jul 2018
Last visit: 13 May 2021
Posts: 93
Own Kudos:
Given Kudos: 187
Concentration: Finance, Statistics
GMAT 1: 620 Q45 V31
GMAT 1: 620 Q45 V31
Posts: 93
Kudos: 23
Kudos
Add Kudos
Bookmarks
Bookmark this Post
another solution since x=3y-7 is increasing line ie if x increases then y increasing(x will increase by y's constant y will increase by x's constant)
hence D
 1   2   
Moderators:
Math Expert
102624 posts
PS Forum Moderator
685 posts