Harshgmat
Is \(r\) negative?
1) \(r < s\)
2) \(r = -s\)
\(r\,\,\mathop < \limits^? \,\,0\)
\(\left( 1 \right)\,\,\,\,r < s\,\,\,\,\left\{ \begin{gathered}\\
\,{\text{Take}}\,\,\left( {r,s} \right) = \left( {0,1} \right)\,\,\,\, \Rightarrow \,\,\,\,\,\left\langle {{\text{NO}}} \right\rangle \,\, \hfill \\\\
\,{\text{Take}}\,\,\left( {r,s} \right) = \left( { - 1,0} \right)\,\,\,\, \Rightarrow \,\,\,\,\,\left\langle {{\text{YES}}} \right\rangle \,\, \hfill \\ \\
\end{gathered} \right.\)
\(\left( 2 \right)\,\,\,\,r = - s\,\,\,\,\left\{ \begin{gathered}\\
\,{\text{Take}}\,\,\left( {r,s} \right) = \left( {1, - 1} \right)\,\,\,\, \Rightarrow \,\,\,\,\,\left\langle {{\text{NO}}} \right\rangle \,\, \hfill \\\\
\,{\text{Take}}\,\,\left( {r,s} \right) = \left( { - 1,1} \right)\,\,\,\, \Rightarrow \,\,\,\,\,\left\langle {{\text{YES}}} \right\rangle \,\, \hfill \\ \\
\end{gathered} \right.\)
\(\left( {1 + 2} \right)\,\,\,\,\left\{ \begin{gathered}\\
\,\,r = 0\,\,\,\,\mathop \Rightarrow \limits^{\left( 2 \right)} \,\,\,\,s = 0\,\,\,\, \Rightarrow \,\,\,\,\,\left( 1 \right)\,\,\,{\text{contradicted}} \hfill \\\\
\,\,r > 0\,\,\,\,\,\mathop \Rightarrow \limits^{\left( 2 \right)} \,\,\,\,s < 0\,\,\,\, \Rightarrow \,\,\,\,\,\left( 1 \right)\,\,\,{\text{contradicted}} \hfill \\ \\
\end{gathered} \right.\,\,\,\,\,\,\,\, \Rightarrow \,\,\,\,\,\,\,r \geqslant 0\,\,\,{\text{impossible}}\,\,\,\,\,\, \Rightarrow \,\,\,\,\left\langle {{\text{YES}}} \right\rangle \,\,\,\,\,\,\)
This solution follows the notations and rationale taught in the GMATH method.
Regards,
Fabio.