GMAT Question of the Day - Daily to your Mailbox; hard ones only

 It is currently 19 Jan 2019, 04:33

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

## Events & Promotions

###### Events & Promotions in January
PrevNext
SuMoTuWeThFrSa
303112345
6789101112
13141516171819
20212223242526
272829303112
Open Detailed Calendar
• ### Free GMAT Strategy Webinar

January 19, 2019

January 19, 2019

07:00 AM PST

09:00 AM PST

Aiming to score 760+? Attend this FREE session to learn how to Define your GMAT Strategy, Create your Study Plan and Master the Core Skills to excel on the GMAT.
• ### FREE Quant Workshop by e-GMAT!

January 20, 2019

January 20, 2019

07:00 AM PST

07:00 AM PST

Get personalized insights on how to achieve your Target Quant Score.

# Kevin drove from A to B at a constant speed of 60 mph. Once he reache

Author Message
TAGS:

### Hide Tags

Math Expert
Joined: 02 Sep 2009
Posts: 52294
Kevin drove from A to B at a constant speed of 60 mph. Once he reache  [#permalink]

### Show Tags

13 Mar 2015, 06:38
3
25
00:00

Difficulty:

55% (hard)

Question Stats:

74% (02:59) correct 26% (03:25) wrong based on 438 sessions

### HideShow timer Statistics

Kevin drove from A to B at a constant speed of 60 mph. Once he reached B, he turned right around without pause, and returned to A at a constant speed of 80 mph. Exactly 4 hours before the end of his trip, he was still approaching B, only 15 miles away from it. What is the distance between A and B?

A. 275 mi
B. 300 mi
C. 320 mi
D. 350 mi
E. 390 mi

Kudos for a correct solution.

_________________
e-GMAT Representative
Joined: 04 Jan 2015
Posts: 2456
Re: Kevin drove from A to B at a constant speed of 60 mph. Once he reache  [#permalink]

### Show Tags

04 May 2015, 20:45
4
1
arkle wrote:
How did we reach to this?

In the last 15 miles of his approach to B, Kevin was traveling at 60 mph, so he traveled that distance in ¼ hr, or 15 minutes.

ThxQ

Hi arkle,

The question statement tells us "exactly 4 hours before the end of his trip he was still approaching B, only 15 miles away from it". Since he was approaching B, that would mean Kevin was on his way from A to B. We know that he drove from A to B at a constant speed of 60 miles/hour.

Using Distance = Speed * Time

15 = 60 * T i.e. T = $$\frac{1}{4}$$ hours = 15 minutes.

Using this information,we can then easily calculate his journey time from B to A i.e. (4 - $$\frac{1}{4}$$) hours = 3.75 hours.

Since we know Kevin's speed from B to A which is 80 miles/hour, we can calculate the Distance = 80 * 3.75 = 300 miles between A & B.

Hope its clear!

Regards
Harsh
_________________

Number Properties | Algebra |Quant Workshop

Success Stories
Guillermo's Success Story | Carrie's Success Story

Ace GMAT quant
Articles and Question to reach Q51 | Question of the week

Number Properties – Even Odd | LCM GCD | Statistics-1 | Statistics-2 | Remainders-1 | Remainders-2
Word Problems – Percentage 1 | Percentage 2 | Time and Work 1 | Time and Work 2 | Time, Speed and Distance 1 | Time, Speed and Distance 2
Advanced Topics- Permutation and Combination 1 | Permutation and Combination 2 | Permutation and Combination 3 | Probability
Geometry- Triangles 1 | Triangles 2 | Triangles 3 | Common Mistakes in Geometry
Algebra- Wavy line | Inequalities

Practice Questions
Number Properties 1 | Number Properties 2 | Algebra 1 | Geometry | Prime Numbers | Absolute value equations | Sets

| '4 out of Top 5' Instructors on gmatclub | 70 point improvement guarantee | www.e-gmat.com

Manager
Joined: 27 Dec 2013
Posts: 237
Re: Kevin drove from A to B at a constant speed of 60 mph. Once he reache  [#permalink]

### Show Tags

14 Mar 2015, 04:33
8
Usually I flunk Time and Distance problem; but, this was seemed a bit achievable.

My thought process is equate Time in all respects.

Let the distance be X.

From A-> B= X/60

From B-A= X/80

Overall Time for the trip= X/60+X/80

Substract 4 from above (4 ago he was 15 miles away from B)

X/60+X/80 -4.

Time taken to cover x-15= x-15/60

X/60+x/80 -4= X-15/60

Solve equation, you will be get answer= X= 300miles.

Hope this is clear.
_________________

Kudos to you, for helping me with some KUDOS.

##### General Discussion
Manager
Joined: 13 Dec 2013
Posts: 59
Location: Iran (Islamic Republic of)
Re: Kevin drove from A to B at a constant speed of 60 mph. Once he reache  [#permalink]

### Show Tags

14 Mar 2015, 01:19
3
2
This is a straightforward problem if we carefully consider the concept of rate / time problems type. and answer is indeed , B

so, here we go , the driver went from point A to B in the CONSTANT speed of 60 mph , the simple concept here is , 60 mph / 60 min =1 it means to cover every mile

, the driver has to spend one minute , so keep it in the mind,

Next : the problem says that Exactly 4 hours before the end of the trip , drive was 15 miles away point B and approaching to the point B , it means , 4 hours was the time to cover

15 miles to cover 15 miles toward the point B and also cover the distance from reverse direction from point B to the point A . already we know that 15 miles with the constant speed of 60 mph

, takes 15 minutes to cover , so if we deduct 15 minutes form 4 hours , we can get the time required to get from point B to the point A WITH 80 mph.

so , we have : 4 hours - 15 minutes = 3 hours and 45 minutes

here we have time required to travel from point B to point A , and we are given the rate of travel 80 mph , so we can get the distance between point B to the point A ,

3.45 h = 3 hours and 45 minutes , 80 mph for 3 hours is : 80 *3 =240 miles and 45 minutes = 45/60 = 3/4 hours then , 80 * 3/4 = 60 miles

so, Total distance = 240+ 60 = 300 miles..... ANSWER : B

regards,
Manager
Joined: 18 Aug 2014
Posts: 119
Location: Hong Kong
Schools: Mannheim
Re: Kevin drove from A to B at a constant speed of 60 mph. Once he reache  [#permalink]

### Show Tags

14 Mar 2015, 05:22
shriramvelamuri wrote:
Usually I flunk Time and Distance problem; but, this was seemed a bit achievable.

My thought process is equate Time in all respects.

Let the distance be X.

From A-> B= X/60

From B-A= X/80

Overall Time for the trip= X/60+X/80

Substract 4 from above (4 ago he was 15 miles away from B)

X/60+X/80 -4.

Time taken to cover x-15= x-15/60

X/60+x/80 -4= X-15/60

Solve equation, you will be get answer= X= 300miles.

Hope this is clear.

How did you solve this equation to get X = 300 ?
Math Expert
Joined: 02 Sep 2009
Posts: 52294
Re: Kevin drove from A to B at a constant speed of 60 mph. Once he reache  [#permalink]

### Show Tags

15 Mar 2015, 21:15
3
2
Bunuel wrote:
Kevin drove from A to B at a constant speed of 60 mph. Once he reached B, he turned right around with pause, and returned to A at a constant speed of 80 mph. Exactly 4 hours before the end of his trip, he was still approaching B, only 15 miles away from it. What is the distance between A and B?

A. 275 mi
B. 300 mi
C. 320 mi
D. 350 mi
E. 390 mi

Kudos for a correct solution.

MAGOOSH OFFICIAL SOLUTION:

In the last 15 miles of his approach to B, Kevin was traveling at 60 mph, so he traveled that distance in ¼ hr, or 15 minutes. That means, when he arrived at B, 15 minutes had elapsed, and he took (4 hr) – (15 min) = 3.75 hr to drive the distance D at 80 mph. It will be easier to leave that time in the form (4 hr) – (15 min).

D = RT = (80 mph)[ (4 hr) – (15 min)] = 320 mi – 20 mi = 300 mi

_________________
SVP
Status: The Best Or Nothing
Joined: 27 Dec 2012
Posts: 1823
Location: India
Concentration: General Management, Technology
WE: Information Technology (Computer Software)
Re: Kevin drove from A to B at a constant speed of 60 mph. Once he reache  [#permalink]

### Show Tags

17 Mar 2015, 23:26
5

Refer distance diagram below:

Attachment:

pse.png [ 2.97 KiB | Viewed 5320 times ]

Say the distance between A & B = d

Given that

Time required for 15 miles (From A to B) + Break (x minutes) + Time required for d miles (from B to A) = 4 hours (Shown in double line in the diagram)

$$\frac{15}{60} + x + \frac{d}{80} = 4$$

x = Time consumed pausing/breaking at point B. This is already included in 4 hours. Equation setup showing prominence of x.

$$d = \frac{15}{4} * 80 = 300$$
_________________

Kindly press "+1 Kudos" to appreciate

Manager
Joined: 22 Jan 2014
Posts: 174
WE: Project Management (Computer Hardware)
Re: Kevin drove from A to B at a constant speed of 60 mph. Once he reache  [#permalink]

### Show Tags

19 Mar 2015, 07:00
Bunuel wrote:
Kevin drove from A to B at a constant speed of 60 mph. Once he reached B, he turned right around with pause, and returned to A at a constant speed of 80 mph. Exactly 4 hours before the end of his trip, he was still approaching B, only 15 miles away from it. What is the distance between A and B?

A. 275 mi
B. 300 mi
C. 320 mi
D. 350 mi
E. 390 mi

Kudos for a correct solution.

let distance be d.

d/60 = t1 --- (1)
d/80 = t2 --- (2)
(d-15)/60 = t1+t2-4 --- (3)

adding 1 & 2 and substituting in 3

d = 300
_________________

Illegitimi non carborundum.

Manager
Joined: 06 Jul 2011
Posts: 95
Re: Kevin drove from A to B at a constant speed of 60 mph. Once he reache  [#permalink]

### Show Tags

04 May 2015, 12:21
How did we reach to this?

In the last 15 miles of his approach to B, Kevin was traveling at 60 mph, so he traveled that distance in ¼ hr, or 15 minutes.

ThxQ
Manager
Joined: 29 May 2013
Posts: 104
Location: India
Concentration: Technology, Marketing
WE: Information Technology (Consulting)
Re: Kevin drove from A to B at a constant speed of 60 mph. Once he reache  [#permalink]

### Show Tags

04 Jul 2015, 00:47
"Once he reached B, he turned right around with pause". IS this statement right?

Should it not be "without" pause?
Board of Directors
Joined: 17 Jul 2014
Posts: 2599
Location: United States (IL)
Concentration: Finance, Economics
GMAT 1: 650 Q49 V30
GPA: 3.92
WE: General Management (Transportation)
Re: Kevin drove from A to B at a constant speed of 60 mph. Once he reache  [#permalink]

### Show Tags

19 Mar 2016, 13:37
the question is worded incorrectly. it says that there will be a pause.
if we get 15 min left to travel to B, then the remaining distance will travel at distance of 80mph for 3h45m. if 300 is the distance, then he MUST have turned right away to A (thus no PAUSE). because of this, B is incorrect, and the only correct answer that can be is A.
are you sure it is not given that there is no pause?
VP
Joined: 07 Dec 2014
Posts: 1152
Re: Kevin drove from A to B at a constant speed of 60 mph. Once he reache  [#permalink]

### Show Tags

26 Mar 2016, 09:11
let d=distance between A and B
round trip time=d/60+d/80=7d/240
7d/240-4=d/60-1/4
d=300 miles
Intern
Joined: 28 Dec 2015
Posts: 39
Re: Kevin drove from A to B at a constant speed of 60 mph. Once he reache  [#permalink]

### Show Tags

03 Jun 2016, 22:45
A|---------------------------C|------15mi-----|B

It's given that exactly 4 hours before the end of the trip, kevin was 15 miles was away from B.
It means that From point C till end of the journey(return from B to A took 4 hours)

So total time T(C-B)+T(Return journey B-A)=4 hours
Since they are moving at constant speeds
So
15/60+T(return)=4 hrs
or T return=4-1/4=15/4 hrs.

Now,Return speed=80 mph
So Distance=speed*time=80*15/4=300 mi
Manager
Joined: 16 Mar 2016
Posts: 129
Location: France
GMAT 1: 660 Q47 V33
GPA: 3.25
Re: Kevin drove from A to B at a constant speed of 60 mph. Once he reache  [#permalink]

### Show Tags

04 Jun 2016, 02:05
mvictor wrote:
the question is worded incorrectly. it says that there will be a pause.
if we get 15 min left to travel to B, then the remaining distance will travel at distance of 80mph for 3h45m. if 300 is the distance, then he MUST have turned right away to A (thus no PAUSE). because of this, B is incorrect, and the only correct answer that can be is A.
are you sure it is not given that there is no pause?

I also think a mistake was made in the question.

Kevin drove from A to B at a constant speed of 60 mph. Once he reached B, he turned right around with NO pause, and returned to A at a constant speed of 80 mph. Exactly 4 hours before the end of his trip, he was still approaching B, only 15 miles away from it. What is the distance between A and B?

In that case:

$$\frac{15}{60}$$ + $$\frac{d}{80}$$ = 4
$$\frac{d}{80}$$ = 4 - $$\frac{1}{4}$$
d = $$\frac{15 * 80}{4}$$ = 300

Do you agree ?
Current Student
Joined: 15 Mar 2016
Posts: 96
Location: India
Concentration: Operations
GMAT 1: 680 Q47 V36
WE: Engineering (Other)
Re: Kevin drove from A to B at a constant speed of 60 mph. Once he reache  [#permalink]

### Show Tags

06 Jun 2016, 00:01
hi bunuel,

What does "he turned around with pause" mean?...this has got me confused. As i can see you have solved by taking into consideration that Kevin turned around and started driving immediately without pause. Please clarify?

Bunuel wrote:
Bunuel wrote:
Kevin drove from A to B at a constant speed of 60 mph. Once he reached B, he turned right around with pause, and returned to A at a constant speed of 80 mph. Exactly 4 hours before the end of his trip, he was still approaching B, only 15 miles away from it. What is the distance between A and B?

A. 275 mi
B. 300 mi
C. 320 mi
D. 350 mi
E. 390 mi

Kudos for a correct solution.

MAGOOSH OFFICIAL SOLUTION:

In the last 15 miles of his approach to B, Kevin was traveling at 60 mph, so he traveled that distance in ¼ hr, or 15 minutes. That means, when he arrived at B, 15 minutes had elapsed, and he took (4 hr) – (15 min) = 3.75 hr to drive the distance D at 80 mph. It will be easier to leave that time in the form (4 hr) – (15 min).

D = RT = (80 mph)[ (4 hr) – (15 min)] = 320 mi – 20 mi = 300 mi

Senior Manager
Joined: 18 Jan 2010
Posts: 251
Re: Kevin drove from A to B at a constant speed of 60 mph. Once he reache  [#permalink]

### Show Tags

06 Jun 2016, 01:08
2
Bunuel wrote:
Kevin drove from A to B at a constant speed of 60 mph. Once he reached B, he turned right around with pause, and returned to A at a constant speed of 80 mph. Exactly 4 hours before the end of his trip, he was still approaching B, only 15 miles away from it. What is the distance between A and B?

A. 275 mi
B. 300 mi
C. 320 mi
D. 350 mi
E. 390 mi

Kudos for a correct solution.

Attachment:

Travelling.JPG [ 16.5 KiB | Viewed 3656 times ]

Refer attached diagram. Entire distance that Kevin has to cover is in blue line.

The diagram clarifies the exact location of "15 miles".

When Kevin was approaching B, his speed was 60 mph.

Time taken by Kevin in covering those 15 miles, before he touched B: [15 miles / 60mph] = (1/4) hours.

(Note: In order to cover the entire distance shown in the diagram, Kevin takes 4 hours)

His trip would end when he reaches back A.

So

(entire time taken from travelling back from B to A) + (1/4) hrs = 4 hours

Time taken in return journey from B to A = 4 - (1/4) = 3 hours + (3/4) hours
Speed: 80 Mph

80 * 3 + 80 * (3/4) = 240 +60 = 300 Km.

Intern
Joined: 07 Oct 2014
Posts: 19
Re: Kevin drove from A to B at a constant speed of 60 mph. Once he reache  [#permalink]

### Show Tags

06 Jun 2016, 01:11
Bunuel wrote:
Bunuel wrote:
Kevin drove from A to B at a constant speed of 60 mph. Once he reached B, he turned right around with pause, and returned to A at a constant speed of 80 mph. Exactly 4 hours before the end of his trip, he was still approaching B, only 15 miles away from it. What is the distance between A and B?

A. 275 mi
B. 300 mi
C. 320 mi
D. 350 mi
E. 390 mi

Kudos for a correct solution.

MAGOOSH OFFICIAL SOLUTION:

In the last 15 miles of his approach to B, Kevin was traveling at 60 mph, so he traveled that distance in ¼ hr, or 15 minutes. That means, when he arrived at B, 15 minutes had elapsed, and he took (4 hr) – (15 min) = 3.75 hr to drive the distance D at 80 mph. It will be easier to leave that time in the form (4 hr) – (15 min).

D = RT = (80 mph)[ (4 hr) – (15 min)] = 320 mi – 20 mi = 300 mi

In the question it is mentioned that Kevin turned around with pause.
I thought that some time T should also account for that pause in the total journey. So the answer that I came up with
1/4 + Pause(p) + D/80 = 4
D= 20[15-4p]
So max value of dist = 300 when p=0 but it is given that there was a pause, so the ans should be <300 which is only statement 1
Director
Joined: 20 Feb 2015
Posts: 795
Concentration: Strategy, General Management
Re: Kevin drove from A to B at a constant speed of 60 mph. Once he reache  [#permalink]

### Show Tags

06 Jun 2016, 02:27
average speed for kevin for the whole journey = 2*60*80/140=6*80/7 =480/7
in 4 hours he should cover (480/7)*4 miles ,which is ~275 miles
from answer choices -let the total distance be 300 miles ,
distance travelled in 4 hours = 300 -15 =275 miles
therefore, B
Intern
Joined: 21 Sep 2016
Posts: 29
Re: Kevin drove from A to B at a constant speed of 60 mph. Once he reache  [#permalink]

### Show Tags

20 Sep 2017, 14:41
60 mph means 1 mile per minute.
If, 4 hours before the end of the trip, he's 15 miles from B, then he'll arrive at B in 15 minutes.
That means that, on his way back, he'll travel 3.75 hours at an average speed of 80 mph. D = AS * T -> D = 3.75 * 80 = 300 miles.
Intern
Joined: 23 Sep 2017
Posts: 20
Re: Kevin drove from A to B at a constant speed of 60 mph. Once he reache  [#permalink]

### Show Tags

31 Oct 2017, 04:59
The total mileages he travel within 4hours before the end of the trip is 15 + AB.
We have : 60/15 + AB/80 = 4 => AB = 300 miles
Re: Kevin drove from A to B at a constant speed of 60 mph. Once he reache &nbs [#permalink] 31 Oct 2017, 04:59

Go to page    1   2    Next  [ 26 posts ]

Display posts from previous: Sort by