Author 
Message 
TAGS:

Hide Tags

Current Student
Joined: 23 Jul 2012
Posts: 37
GPA: 3.9

Let S be a finite set of consecutive multiples of 7.
[#permalink]
Show Tags
28 Jun 2013, 21:03
Question Stats:
25% (01:53) correct 75% (02:01) wrong based on 297 sessions
HideShow timer Statistics
Let S be a finite set of consecutive multiples of 7. How many terms are there in S? (1) The sum of the terms in set S is 105. (2) The standard deviation of set S is equal to 3.5
Official Answer and Stats are available only to registered users. Register/ Login.




Math Expert
Joined: 02 Sep 2009
Posts: 62448

Re: Let S be a finite set of consecutive multiples of 7.
[#permalink]
Show Tags
28 Jun 2013, 21:43
Let S be a finite set of consecutive multiples of 7. How many terms are there in S?(1) The sum of the terms in set S is 105. Clearly insufficient. For example, consider S={28, 35, 42} and {49, 56}. (2) The standard deviation of set S is equal to 3.5. Important property: if we add or subtract a constant to each term in a set SD will not change. From this it follows, that: Any set with two consecutive multiples of 7 will have the same standard deviation. For example, ..., {0, 7}, {7, 14}, {14, 21}, {21, 28}, ... will have the same standard deviation. Any set with three consecutive multiples of 7 will have the same standard deviation. For example, ..., {0, 7, 14}, {7, 14, 21}, {14, 21, 28}, {21, 28, 35}, ... will have the same standard deviation. Any set with four consecutive multiples of 7 will have the same standard deviation. For example, ..., {0, 7, 14, 21}, {7, 14, 21, 28}, {14, 21, 28, 35}, {21, 28, 35, 42}, ... will have the same standard deviation. ... We know the standard deviation of S is 3.5. We CAN get the standard deviations of {0, 7}, {0, 7, 14}, {0, 7, 14, 21}, ... Only one of them will have the standard deviation of 3.5. So, we can get how many terms are there in the set. Sufficient. Answer: B. Hope it's clear.
_________________




Intern
Joined: 29 Oct 2013
Posts: 18

Re: Let S be a finite set of consecutive multiples of 7.
[#permalink]
Show Tags
01 Sep 2014, 07:53
Can you post a link for tips on Standard Deviations? I'm a baby with S.D's! :/



Math Expert
Joined: 02 Sep 2009
Posts: 62448

Re: Let S be a finite set of consecutive multiples of 7.
[#permalink]
Show Tags
01 Sep 2014, 07:57
fra wrote: Can you post a link for tips on Standard Deviations? I'm a baby with S.D's! :/ Theory on SD: mathstandarddeviation87905.htmlCheck Standard Deviation Questions in our Special Questions Directory. Hope it helps.
_________________



Director
Joined: 28 Nov 2014
Posts: 812
Concentration: Strategy
GPA: 3.71

Re: Let S be a finite set of consecutive multiples of 7.
[#permalink]
Show Tags
27 Oct 2016, 00:37
Bunuel wrote: Let S be a finite set of consecutive multiples of 7. How many terms are there in S?
(1) The sum of the terms in set S is 105. Clearly insufficient. For example, consider S={28, 35, 42} and {49, 56}.
(2) The standard deviation of set S is equal to 3.5. Important property: if we add or subtract a constant to each term in a set SD will not change. From this it follows, that:
Any set with two consecutive multiples of 7 will have the same standard deviation. For example, ..., {0, 7}, {7, 14}, {14, 21}, {21, 28}, ... will have the same standard deviation. Any set with three consecutive multiples of 7 will have the same standard deviation. For example, ..., {0, 7, 14}, {7, 14, 21}, {14, 21, 28}, {21, 28, 35}, ... will have the same standard deviation. Any set with four consecutive multiples of 7 will have the same standard deviation. For example, ..., {0, 7, 14, 21}, {7, 14, 21, 28}, {14, 21, 28, 35}, {21, 28, 35, 42}, ... will have the same standard deviation. ...
We know the standard deviation of S is 3.5. We CAN get the standard deviations of {0, 7}, {0, 7, 14}, {0, 7, 14, 21}, ... Only one of them will have the standard deviation of 3.5. So, we can get how many terms are there in the set. Sufficient.
Answer: B.
Hope it's clear. Bunuel One question,how are we sure that one set of consecutive numbers of multiple of 7 will have 3.5 as the S.D. Can't this be the case that none of the sets of multiples of 7 will have a S.D. of 3.5? Please help. Thanks



Math Expert
Joined: 02 Sep 2009
Posts: 62448

Re: Let S be a finite set of consecutive multiples of 7.
[#permalink]
Show Tags
27 Oct 2016, 01:00
Keats wrote: Bunuel wrote: Let S be a finite set of consecutive multiples of 7. How many terms are there in S?
(1) The sum of the terms in set S is 105. Clearly insufficient. For example, consider S={28, 35, 42} and {49, 56}.
(2) The standard deviation of set S is equal to 3.5. Important property: if we add or subtract a constant to each term in a set SD will not change. From this it follows, that:
Any set with two consecutive multiples of 7 will have the same standard deviation. For example, ..., {0, 7}, {7, 14}, {14, 21}, {21, 28}, ... will have the same standard deviation. Any set with three consecutive multiples of 7 will have the same standard deviation. For example, ..., {0, 7, 14}, {7, 14, 21}, {14, 21, 28}, {21, 28, 35}, ... will have the same standard deviation. Any set with four consecutive multiples of 7 will have the same standard deviation. For example, ..., {0, 7, 14, 21}, {7, 14, 21, 28}, {14, 21, 28, 35}, {21, 28, 35, 42}, ... will have the same standard deviation. ...
We know the standard deviation of S is 3.5. We CAN get the standard deviations of {0, 7}, {0, 7, 14}, {0, 7, 14, 21}, ... Only one of them will have the standard deviation of 3.5. So, we can get how many terms are there in the set. Sufficient.
Answer: B.
Hope it's clear. Bunuel One question,how are we sure that one set of consecutive numbers of multiple of 7 will have 3.5 as the S.D. Can't this be the case that none of the sets of multiples of 7 will have a S.D. of 3.5? Please help. Thanks On the GMAT, two data sufficiency statements always provide TRUE information and these statements NEVER contradict each other or the stem. Hence if it's said that there is such a set then there must be. FYI, ..., {0, 7}, {7, 14}, {14, 21}, {21, 28}, ... have the SD of 3.5.
_________________



Manager
Joined: 23 Aug 2017
Posts: 117

Re: Let S be a finite set of consecutive multiples of 7.
[#permalink]
Show Tags
13 Dec 2018, 00:17
Bunuelcant this be the case that sets consisting of different numbers of consecutive multiples of 7 can still have the same SD as 3.5? For example a set of 3 consecutive multiples of 7 has SD=3.5 and so has another set consisting of may be 4 or 2 consecutive multiples of 7(more spread out bothways). Thanks in advance



Math Expert
Joined: 02 Sep 2009
Posts: 62448

Re: Let S be a finite set of consecutive multiples of 7.
[#permalink]
Show Tags
13 Dec 2018, 00:26
Debashis Roy wrote: Bunuelcant this be the case that sets consisting of different numbers of consecutive multiples of 7 can still have the same SD as 3.5? For example a set of 3 consecutive multiples of 7 has SD=3.5 and so has another set consisting of may be 4 or 2 consecutive multiples of 7(more spread out bothways). Thanks in advance No. More elements you add to a set of consecutive multiples, more widespread it becomes, thus larger SD you get. For example: The standard deviation of {0, 7} = 3.5 The standard deviation of {0, 7, 14} = ~5,7 The standard deviation of {0, 7, 14, 21} = ~7.8 The standard deviation of {0, 7, 14, 21, 28} = ~9.9
_________________



NonHuman User
Joined: 09 Sep 2013
Posts: 14448

Re: Let S be a finite set of consecutive multiples of 7.
[#permalink]
Show Tags
03 Jan 2020, 01:44
Hello from the GMAT Club BumpBot! Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up  doing my job. I think you may find it valuable (esp those replies with Kudos). Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________




Re: Let S be a finite set of consecutive multiples of 7.
[#permalink]
03 Jan 2020, 01:44






