Author 
Message 
TAGS:

Hide Tags

Veritas Prep GMAT Instructor
Joined: 16 Oct 2010
Posts: 10011
Location: Pune, India

Re: List T consist of 30 positive decimals, none of which is an integer
[#permalink]
Show Tags
15 Dec 2017, 00:35
shamanth25 wrote: List T consist of 30 positive decimals, none of which is an integer, and the sum of the 30 decimals is S. The estimated sum of the 30 decimals, E, is defined as follows. Each decimal in T whose tenths digit is even is rounded up to the nearest integer, and each decimal in T whose tenths digits is odd is rounded down to the nearest integer. If 1/3 of the decimals in T have a tenths digit that is even, which of the following is a possible value of E  S ?
I. 16 II. 6 III. 10
A. I only B. I and II only C. I and III only D. II and III only E. I, II, and III Check out our video solution to this very tricky problem: https://www.veritasprep.com/gmatsoluti ... olving_224
_________________
Karishma Veritas Prep GMAT Instructor
Learn more about how Veritas Prep can help you achieve a great GMAT score by checking out their GMAT Prep Options >



Director
Status: Professional GMAT Tutor
Affiliations: AB, cum laude, Harvard University (Class of '02)
Joined: 10 Jul 2015
Posts: 717
Location: United States (CA)
Age: 40
GMAT 1: 770 Q47 V48 GMAT 2: 730 Q44 V47 GMAT 3: 750 Q50 V42
WE: Education (Education)

Re: List T consist of 30 positive decimals, none of which is an integer
[#permalink]
Show Tags
18 Dec 2017, 20:49
Attached is a visual that should help. To keep it simple, I kept all my positive decimals between 0 and 1; since the question refers to the relative distance between the actual (S) and estimated (E) sets of sums, making them larger doesn't have any effect on the range of E  S. _
Attachments
Screen Shot 20171218 at 7.47.28 PM.png [ 203.95 KiB  Viewed 3244 times ]



Retired Moderator
Joined: 25 Feb 2013
Posts: 1156
Location: India
GPA: 3.82

Re: List T consist of 30 positive decimals, none of which is an integer
[#permalink]
Show Tags
23 Dec 2017, 22:49
shamanth25 wrote: List T consist of 30 positive decimals, none of which is an integer, and the sum of the 30 decimals is S. The estimated sum of the 30 decimals, E, is defined as follows. Each decimal in T whose tenths digit is even is rounded up to the nearest integer, and each decimal in T whose tenths digits is odd is rounded down to the nearest integer. If 1/3 of the decimals in T have a tenths digit that is even, which of the following is a possible value of E  S ?
I. 16 II. 6 III. 10
A. I only B. I and II only C. I and III only D. II and III only E. I, II, and III it is clear that in T 10 decimals have even tenths digit and 20 decimals have odd tenths digit. S is the sum of numbers in T Now let's try to find ES(max) and ES(min) to get the ranges. Here S is constant only E will change Now ES(max) will occur when there will be a maximum increment in E. This will happen when Even decimals are rounded up the max and odd decimals when rounded down has the least impact So lowest tenth digit Even decimals could be 0 for eg. 2.01 when rounded up becomes 3, an increment of 0.99 or 1 to be approx Hence increase from even decimals = 1*10=10 points Odd decimals has to be 0.1, when rounded down becomes 0, a decrease of 0.1 Hence decrease from Odd decimals = 0.1*20=2 Hence Net change i.e \(ES(max)=102=8\) Thus 6 is a possibility (if you take even 0.2 and odd as 0.1, you will get exact 6) and as 10>8 so 10 is not possible II holds trueNow ES(min) will be when even decimals increment is as low as possible and odd decimals are deceased the most So Even decimals has to be 0.899999 when rounded up becomes 1, an increase of 0.100001 or apprx 0.1 Hence increase from even decimals = 0.1*10=1 points Odd decimals has to be 0.99999, when rounded down becomes 0, a decrease of 0.999999 or approx 1 Hence decrease from Odd decimals = 1*20=20 Hence Net change i.e \(ES(min)=120=19\) so 16 is possible (if you take even to be 0.8 & odd to be 0.9, you will get exact 16) (I holds true)Hence Answer is B



Director
Status: Professional GMAT Tutor
Affiliations: AB, cum laude, Harvard University (Class of '02)
Joined: 10 Jul 2015
Posts: 717
Location: United States (CA)
Age: 40
GMAT 1: 770 Q47 V48 GMAT 2: 730 Q44 V47 GMAT 3: 750 Q50 V42
WE: Education (Education)

Re: List T consist of 30 positive decimals, none of which is an integer
[#permalink]
Show Tags
23 Dec 2017, 23:03
niks18 wrote: So Even decimals has to be 0.2 when rounded up becomes 1, an increment of 0.8
Hence increase from even decimals = 0.8*10=8 points The even decimals rounded up can actually equal (nearly) 10, not just 8, because 0.01 also has an even tenths digit (don't forget that zero, not 2, is the smallest even digit).



Retired Moderator
Joined: 25 Feb 2013
Posts: 1156
Location: India
GPA: 3.82

Re: List T consist of 30 positive decimals, none of which is an integer
[#permalink]
Show Tags
23 Dec 2017, 23:45
mcelroytutoring wrote: niks18 wrote: So Even decimals has to be 0.2 when rounded up becomes 1, an increment of 0.8
Hence increase from even decimals = 0.8*10=8 points The even decimals rounded up can actually equal (nearly) 10, not just 8, because 0.01 also has an even tenths digit (don't forget that zero, not 2, is the smallest even digit). Hi mcelroytutoringYes 0.001 will have even tenths digit. actually the intention of my solution was to arrive at exact 6 & 16 to prove the option B is correct as this is a could be true question. I guess I should reword the solution to avoid ambiguity. Thanks for highlighting.



Director
Status: Professional GMAT Tutor
Affiliations: AB, cum laude, Harvard University (Class of '02)
Joined: 10 Jul 2015
Posts: 717
Location: United States (CA)
Age: 40
GMAT 1: 770 Q47 V48 GMAT 2: 730 Q44 V47 GMAT 3: 750 Q50 V42
WE: Education (Education)

Re: List T consist of 30 positive decimals, none of which is an integer
[#permalink]
Show Tags
24 Dec 2017, 00:12
Hi niks18, Sure, that makes senseboth strategies work.



Intern
Joined: 18 Jan 2017
Posts: 43
Location: India
Concentration: General Management, Entrepreneurship
GPA: 4

Re: List T consist of 30 positive decimals, none of which is an integer
[#permalink]
Show Tags
07 Jan 2018, 12:43
Total 30. the value of E: 1/3 of the decimals in T have a tenths digit that is even so 10 numbers have an even tenths digit 20 numbers have an odd tenths digit.
now for any decimal with a even tenths digits would be 0.2,.04,0.6, 0.8, 1.2, 1.4, 1.6, 1.8 and so on!
for evens we round up! so they'll become 1,1,1,1,2,2,2 and so on!
now for any decimal with a odd tenths digits would be 0.1,0.3,0.5, 0.7, 0.9, 1.1, 1.3, 1.5, 1.7 and so on!
for odds we round down! so they'll become 0,0,0,0,0,1,1,1,1 and so on!
For E :
E = (sum of all 30 integer parts) +10(1)20(1) =(sum of all 30 integer parts)10
or simply 10! (if you consider all decimals are between 0 and 1 then sum of evens = 10(1) and sum of odds become 20(0)
Now for "S": The maximum possible value of S occurs when ten numbers have '8' as tenths digit and remaining 20 numbers have '9' as tenths digit. Smax = (sum of all 30 integer parts) +10(0.8)+20(0.9) = (sum of all 30 integer parts)+26
or simply .8(10)+0.9(20) = 26
The minimum possible value of S occurs when ten numbers have '2' as tenth digit and remaining 20 numbers have '1' as tenth digit. Smin = (sum of all 30 integer parts) +10(0.2)+20(0.1) = (sum of all 30 integer parts)+4
or simple 0.2(10)+0.1(20) = 4
MAX S  E= 2610 =16 MIN SE = 410= 6



Intern
Joined: 18 Sep 2017
Posts: 2

Re: List T consist of 30 positive decimals, none of which is an integer
[#permalink]
Show Tags
21 Feb 2018, 10:13
I can assume all of the 30 decimals are in the form of 0. something.
In this case, E = 10, S could never be 0 as all numbers are positive.
And S could be, 10 * 0,2 + 20 * 0.1 as a minimum. So ES = 6.
And S could be, 10 * 0,8 + 20 * 0,9. So ES = 16



Intern
Joined: 14 Dec 2016
Posts: 11

Re: List T consist of 30 positive decimals, none of which is an integer
[#permalink]
Show Tags
04 Mar 2018, 03:28
VeritasPrepKarishma wrote: shamanth25 wrote: List T consist of 30 positive decimals, none of which is an integer, and the sum of the 30 decimals is S. The estimated sum of the 30 decimals, E, is defined as follows. Each decimal in T whose tenths digit is even is rounded up to the nearest integer, and each decimal in T whose tenths digits is odd is rounded down to the nearest integer. If 1/3 of the decimals in T have a tenths digit that is even, which of the following is a possible value of E  S ?
I. 16 II. 6 III. 10
A. I only B. I and II only C. I and III only D. II and III only E. I, II, and III
what is the best way to solve this question.
many thanks S This is how I would solve it: Even tenth digit  Round up  10 numbers Odd tenth digit  Round down  20 numbers E  S can take many values so how do we figure which ones it cannot take? We need to find the range of E  S  the minimum value it can take and the maximum value it can take. Minimum value of E  S => E is much less than S. How do we make E much less than S? By doing 2 things: 1. When I round up, the difference between actual and estimate should be little. Say the numbers are something like 3.8999999 (very close to 3.9) and they will be rounded up to 4 i.e. the estimate gains 0.1 per number. Since there are 10 even tenth digit numbers, the estimate will be apprx .1*10 = 1 more than actual 2. When I round down, the difference between actual and estimate should be huge. Say the numbers are something like 3.999999 (very close to 4) and they will be rounded down to 3 i.e. the estimate loses apprx 1 per number. Since there are 20 such numbers, the estimate is 1*20 = 20 less than actual. Overall, the estimate will be apprx 20  1 = 19 less than actual E  S = 19 Maximum value of E  S => E is much greater than S. How do we make E much greater than S? By doing 2 things: 1. When we round up, the difference between actual and estimate should be very high. Say the numbers are something like 3.000001 (very close to 3) and they will be rounded up to 4 i.e. the estimate gains 1 per number. Since there are 10 even tenth digit numbers, the estimate will be apprx 1*10 = 10 more than actual 2. When we round down, the difference between actual and estimate should be very little. Say the numbers are 3.1. They will be rounded down to 3 i.e. the estimate loses apprx 0.1 per number. Since there are 20 such numbers, the estimate is 0.1*20 = 2 less than actual. Maximum value of E  S = 10  2 = 8 So 10 cannot be the value of E  S. 1. When we round up, the difference between actual and estimate should be very high. Say the numbers are something like 3.000001 (very close to 3) and they will be rounded up to 4 i.e. the estimate gains 1 per number. Since there are 10 even tenth digit numbers, the estimate will be apprx 1*10 = 10 more than actua0 is not a even number.. should'nt it be min 3.29999999



Veritas Prep GMAT Instructor
Joined: 16 Oct 2010
Posts: 10011
Location: Pune, India

Re: List T consist of 30 positive decimals, none of which is an integer
[#permalink]
Show Tags
04 Mar 2018, 04:09
qazi11 wrote:
0 is not a even number.. should'nt it be min 3.29999999
0 is an even integer. It is neither negative nor positive but it is even.
_________________
Karishma Veritas Prep GMAT Instructor
Learn more about how Veritas Prep can help you achieve a great GMAT score by checking out their GMAT Prep Options >



Intern
Joined: 08 Dec 2016
Posts: 31
Location: Italy

Re: List T consist of 30 positive decimals, none of which is an integer
[#permalink]
Show Tags
07 Apr 2018, 08:44
Easier than it looks like:
E = 10 > 1/3 odd (rounded up)  1*10 + 2/3 even (rounded down) 0*20
ES: I)16 Possible > ES=10  10*0.6  20*0.5 = 16 II) 6 Possible > ES = 10  10*(0.2)  20*0.1 = 6 III) Not possible > ES = 10  a positive number = cannot be 10!!!
Hope it helps Matt



Manager
Joined: 03 Apr 2016
Posts: 87
Location: India
Concentration: General Management, Leadership
GMAT 1: 580 Q43 V27 GMAT 2: 650 Q32 V48
GPA: 3.99
WE: Design (Consulting)

Re: List T consist of 30 positive decimals, none of which is an integer
[#permalink]
Show Tags
07 Apr 2018, 11:27
Schawjibb wrote: IMO, the best solution is shown by M Dabral of GMAT Quantum in one of its video explanations. Here is the link: http://www.gmatquantum.com/og13/218pro ... ition.htmlAlthough NOT most of GMAT Quantum's video explanations/solutions are up to the par, I found that this one along with some others (e.g., PS 178) is the best video explanation floating out there in the internet. thanks a lot for sharing the video explanation. Video explanations are a great resource for quicker preparation. I wish all 700+ level gmatclub questions have video explanations to them.



Intern
Joined: 03 Jun 2018
Posts: 1

Re: List T consist of 30 positive decimals, none of which is an integer
[#permalink]
Show Tags
14 Jun 2018, 18:25
a: the sum of 30 integers b: the sum of 30 decimals So : E=a+10,0 S= a,b ES= 10 + (0b)
b max: 08*10 + 0.9 *20 = 26 b min: 0.2*10 + 0.1 * 20 = 6
So the range of ES = [16,6]



Intern
Joined: 04 Mar 2018
Posts: 3

Re: List T consist of 30 positive decimals, none of which is an integer
[#permalink]
Show Tags
17 Jun 2018, 14:25
I've read through most of the solutions here, but nobody has really stated the obvious rule that actually makes this problem solvable:
1. The laws of this problem are absolute. If you find any solution for any set of numbers, it applies to every possible combination of numbers. Therefore, if you find that ES=10 for one set of example numbers, ES=10 is a solution for the entire problem space. No exceptions.
2. Therefore, since #1 is true, choose the simplest set of example numbers you can.
That's why the solution is easiest by choosing the following numbers: Round Up: 0.2, 0.4, 0.6, 0.8 Round Down: 0.1, 0.3, 0.5, 0.7, 0.9
Because whatever differences you find using the above numbers, will apply to every possible combination of other numbers! 1.1, 1000.1, 123413546.1  it doesn't matter!
If you can understand that, now solve the problem.



Math Expert
Joined: 02 Sep 2009
Posts: 60646

Re: List T consist of 30 positive decimals, none of which is an integer
[#permalink]
Show Tags
23 Jun 2018, 00:03
shamanth25 wrote: List T consist of 30 positive decimals, none of which is an integer, and the sum of the 30 decimals is S. The estimated sum of the 30 decimals, E, is defined as follows. Each decimal in T whose tenths digit is even is rounded up to the nearest integer, and each decimal in T whose tenths digits is odd is rounded down to the nearest integer. If 1/3 of the decimals in T have a tenths digit that is even, which of the following is a possible value of E  S ?
I. 16 II. 6 III. 10
A. I only B. I and II only C. I and III only D. II and III only E. I, II, and III Official Explanation: Since 1/3 of the 30 decimals in T have an even tenths digit, it follows that 1/3*(30)=10 decimals in T have an even tenths digit. Let \(T_E\) represent the list of these 10 decimals, let \(S_E\) represent the sum of all 10 decimals in \(T_E\), and let \(E_E\) represent the estimated sum of all 10 decimals in \(T_E\) after rounding. The remaining 20 decimals in T have an odd tenths digit. Let \(T_O\) represent the list of these 20 remaining decimals, let \(S_O\) represent the sum of all 20 decimals in \(T_O\), and let \(E_O\) represent the estimated sum of all 20 decimals in \(T_O\) after rounding. Note that \(E = E_E + E_O\) and \(S = S_E + S_O\) and hence \(E − S = (E_E + E_O) − (S_E + S_O) = (E_E − S_E) + (E_O − S_O)\). The least values of \(E_E − S_E\) occur at the extreme where each decimal in TE has tenths digit 8. Here, the difference between the rounded integer and the original decimal is greater than 0.1. (For example, the difference between the integer 15 and 14.899 that has been rounded to 15 is 0.101.) Hence, \(E_E − S_E > 10(0.1) = 1\). The greatest values of \(E_E − S_E\) occur at the other extreme, where each decimal in \(T_E\) has tenths digit 0. Here, the difference between the rounded integer and the original decimal is less than 1. (For example, the difference between the integer 15 and 14.001 that has been rounded to 15 is 0.999.) Hence, EE − SE < 10(1) = 10. Thus, \(1 < E_E − S_E < 10\). Similarly, the least values of EO − SO occur at the extreme where each decimal in TO has tenths digit 9. Here, the difference between the rounded integer and the original decimal is greater than −1. (For example, the difference between the integer 14 and 14.999 that has been rounded to 14 is −0.999.) Hence EO − SO > 20(−1) = −20. The greatest values of EO − SO occur at the other extreme where each decimal in TO has tenths digit 1. Here, the difference between the rounded integer and the original decimal is less than or equal to −0.1. (For example, the difference between the integer 14 and 14.1 that has been rounded to 14 is −0.1.) Hence, \(E_O − S_O ≤ 20(−0.1) = −2\). Thus, \(−20 < E_O − S_O ≤ −2\). Adding the inequalities \(1 < E_E − S_E < 10\) and \(−20 < E_O − S_O ≤ −2\) gives \(−19 < (E_E − S_E) + (E_O − S_O) < 8\). Therefore, \(−19 < (E_E + E_O) − (S_E + S_O) < 8\) and \(−19 < E − S < 8\). Thus, of the values −16, 6, and 10 for E − S, only −16 and 6 are possible. Note that if T contains 10 repetitions of the decimal 1.8 and 20 repetitions of the decimal 1.9, \(S = 10(1.8) + 20(1.9) = 18 + 38 = 56\), \(E = 10(2) + 20(1) = 40\), and \(E − S = 40 − 56 = −16\). Also, if T contains 10 repetitions of the decimal 1.2 and 20 repetitions of the decimal 1.1, \(S = 10(1.2) + 20(1.1) = 12 + 22 = 34\), \(E = 10(2) + 20(1) = 40\), and \(E − S = 40 − 34 = 6\). Answer: B.
_________________



Intern
Joined: 14 Jul 2017
Posts: 23
Location: United States
GMAT 1: 710 Q49 V38

Re: List T consist of 30 positive decimals, none of which is an integer
[#permalink]
Show Tags
11 Sep 2018, 12:16
Please explain why we didn't consider 0 (which is an even number) which calculating minimum E? As someone said earlier, the number could have been 1.03, in which case the maximum contribution for this would be 1*10 =10



Intern
Joined: 04 Feb 2018
Posts: 34
Location: India
Concentration: Marketing, Technology

Re: List T consist of 30 positive decimals, none of which is an integer
[#permalink]
Show Tags
04 Oct 2018, 09:43
VeritasKarishma wrote: shamanth25 wrote: List T consist of 30 positive decimals, none of which is an integer, and the sum of the 30 decimals is S. The estimated sum of the 30 decimals, E, is defined as follows. Each decimal in T whose tenths digit is even is rounded up to the nearest integer, and each decimal in T whose tenths digits is odd is rounded down to the nearest integer. If 1/3 of the decimals in T have a tenths digit that is even, which of the following is a possible value of E  S ?
I. 16 II. 6 III. 10
A. I only B. I and II only C. I and III only D. II and III only E. I, II, and III
what is the best way to solve this question.
many thanks S This is how I would solve it: Even tenth digit  Round up  10 numbers Odd tenth digit  Round down  20 numbers E  S can take many values so how do we figure which ones it cannot take? We need to find the range of E  S  the minimum value it can take and the maximum value it can take. Minimum value of E  S => E is much less than S. How do we make E much less than S? By doing 2 things: 1. When I round up, the difference between actual and estimate should be little. Say the numbers are something like 3.8999999 (very close to 3.9) and they will be rounded up to 4 i.e. the estimate gains 0.1 per number. Since there are 10 even tenth digit numbers, the estimate will be apprx .1*10 = 1 more than actual 2. When I round down, the difference between actual and estimate should be huge. Say the numbers are something like 3.999999 (very close to 4) and they will be rounded down to 3 i.e. the estimate loses apprx 1 per number. Since there are 20 such numbers, the estimate is 1*20 = 20 less than actual. Overall, the estimate will be apprx 20  1 = 19 less than actual E  S = 19 Maximum value of E  S => E is much greater than S. How do we make E much greater than S? By doing 2 things: 1. When we round up, the difference between actual and estimate should be very high. Say the numbers are something like 3.000001 (very close to 3) and they will be rounded up to 4 i.e. the estimate gains 1 per number. Since there are 10 even tenth digit numbers, the estimate will be apprx 1*10 = 10 more than actual 2. When we round down, the difference between actual and estimate should be very little. Say the numbers are 3.1. They will be rounded down to 3 i.e. the estimate loses apprx 0.1 per number. Since there are 20 such numbers, the estimate is 0.1*20 = 2 less than actual. Maximum value of E  S = 10  2 = 8 So 10 cannot be the value of E  S. are such type of questions solvable under the GMAT time constraints ? I think it will take 12 min to understand the question itself



Intern
Joined: 05 Sep 2016
Posts: 24
Location: Canada

Re: List T consist of 30 positive decimals, none of which is an integer
[#permalink]
Show Tags
01 Jan 2019, 17:58
I found the following on the Magoosh forum. Its very elegant solution  I can assume all of the 30 decimals are in the form of <0>.<something> In this case, E = 10, S could never be 0 as all numbers are positive. And S could be, 10 * 0.2 + 20 * 0.1 as a minimum. So ES = 6. And S could be, 10 * 0.8 + 20 * 0.9. So ES = 16
_________________
[i]"Take up one idea. Make that one idea your life"



GMAT Club Legend
Joined: 12 Sep 2015
Posts: 4228
Location: Canada

Re: List T consist of 30 positive decimals, none of which is an integer
[#permalink]
Show Tags
05 Jan 2019, 12:33
shamanth25 wrote: List T consist of 30 positive decimals, none of which is an integer, and the sum of the 30 decimals is S. The estimated sum of the 30 decimals, E, is defined as follows. Each decimal in T whose tenths digit is even is rounded up to the nearest integer, and each decimal in T whose tenths digits is odd is rounded down to the nearest integer. If 1/3 of the decimals in T have a tenths digit that is even, which of the following is a possible value of E  S ?
I. 16 II. 6 III. 10
A. I only B. I and II only C. I and III only D. II and III only E. I, II, and III
Given: 10 of the values must have an EVEN tenths digit, and the remaining 20 values must have an ODD tenths digit. Let's try to determine the MAXIMUM value of E  S and the MINIMUM value of E  S Once we do that, we'll know the range of possible values of E  S IMPORTANT: To make things easier, let's consider decimals in the form 0.somethingMAXIMUM value of E  SIn order to MAXIMIZE the value of E  S, we must MINIMIZE the value of SWe can do this by making the decimals with an ODD tenths digit 0.1, and by making the decimals with an EVEN tenths digit 0.01 So List T consists of twenty 0.1's and ten 0.01's This means S = 20(0.1) + 10(0.01) = 2.1When we complete our ROUNDING, we get: twenty 0's and ten 1's So, E = 20(0) + 10(1) = 10So, the MAXIMUM value of E  S = 10  2.1 = 7.9MINIMUM value of E  SIn order to MINIMIZE the value of E  S, we must MAXIMIZE the value of SWe can do this by making the decimals with an ODD tenths digit 0.99999..., and by making the decimals with an EVEN tenths digit 0.89999... So List T consists of twenty 0.9999....'s and ten 0.89999....'s This means S ≈ 20(1) + 10(0.9) ≈ 29ASIDE: We need not get super crazy about how many 9's we add to our decimals. Let's just look for an APPROXIMATE value. When we complete our ROUNDING, we get: twenty 0's and ten 1's So, E = 20(0) + 10(1) = 10So, the MINIMUM value of E  S = 10  29 = 19So, the value of E  S can range from (approximately) 19 to 7.9Since 16 and 6 fall within this range, the correct answer is B Cheers, Brent
_________________
Test confidently with gmatprepnow.com



Intern
Joined: 30 Dec 2018
Posts: 39

Re: List T consist of 30 positive decimals, none of which is an integer
[#permalink]
Show Tags
26 Mar 2019, 05:23
The question can be solved through algebra by defining below equation. E = 10 (A+1) + 20 A S = 10 (A+d1) + 20 (A+d2); 10d1 can be assumed as summation of even decimals and 10d2 can be assumed as summation of odd decimals ES = 10  10d1  20d2 To find range we can maximize and minimize the ds (d1 & d2) Min of ES = 10  10(0.8)  10(0.9) = 10818 = 16 Max of ES = 10  10 (0.2)  10(0.1) = 1021 = 6 Possible values for ES are 16 & 6




Re: List T consist of 30 positive decimals, none of which is an integer
[#permalink]
26 Mar 2019, 05:23



Go to page
Previous
1 2 3 4
Next
[ 64 posts ]



