Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

For prime numbers \(x\) and \(y\), \(x^3*y^5=z^4\). How many positive factors does positive integer \(z\) have?

A. One B. Two C. Three D. Four E. Five

Notice that \(z^4\) is a perfect square, thus it must have odd number of factors. Since \(z^4\) equals to \(x^3*y^5\), then \(x^3*y^5\) must also have odd number of factors.

Now, if \(x\) and \(y\) are different primes, then the number of factors of \(x^3*y^5\) will be \((3 + 1)(5 + 1) = 24\), which is not odd. Therefore \(x\) and \(y\) MUST be the same prime.

In this case \(x^3*y^5 = x^3*x^5 = x^8 = z^4\).

\(x^8 = z^4\);

\(x^2 = z\).

Since \(x\) is prime, then the number of factors of \(z\) is \((2 + 1) = 3\).

"Notice that z4 is a perfect square, thus it must have odd number of factors. Since z4 equals to x3∗y5, then x3∗y5 must also have odd number of factors."

Question about perfect squares. Would z^6 also be a perfect square?

Also, why do x^3 and y^5 need odd factors, given z^4?

"Notice that z4 is a perfect square, thus it must have odd number of factors. Since z4 equals to x3∗y5, then x3∗y5 must also have odd number of factors."

Question about perfect squares. Would z^6 also be a perfect square?

Also, why do x^3 and y^5 need odd factors, given z^4?

1. Any integer in even power is a perfect square. 2. \(z^4\) is a perfect square. A perfect square has odd number of factors. Since \(z^4\) equals to \(x^3*y^5\), then \(x^3*y^5\) (the product of x^3 and y^5, not the multiples separately) must also have odd number of factors.

Finding the Number of Factors of an Integer:

First make prime factorization of an integer \(n=a^p*b^q*c^r\), where \(a\), \(b\), and \(c\) are prime factors of \(n\) and \(p\), \(q\), and \(r\) are their powers.

The number of factors of \(n\) will be expressed by the formula \((p+1)(q+1)(r+1)\). NOTE: this will include 1 and n itself.

Example: Finding the number of all factors of 450: \(450=2^1*3^2*5^2\)

Total number of factors of 450 including 1 and 450 itself is \((1+1)*(2+1)*(2+1)=2*3*3=18\) factors.

BACK TO YOUR QUESTION: In case of a perfect square, say for \(6^2 = 2^2*3^2\), the powers of primes will be always even, so when counting the number of factors we'd have \((even + 1)(even + 1) = (2 + 1)(2 + 1) = 3*3 = odd*odd = odd\).

Tips about the perfect square: 1. The number of distinct factors of a perfect square is ALWAYS ODD. The reverse is also true: if a number has the odd number of distinct factors then it's a perfect square;

2. The sum of distinct factors of a perfect square is ALWAYS ODD. The reverse is NOT always true: a number may have the odd sum of its distinct factors and not be a perfect square. For example: 2, 8, 18 or 50;

3. A perfect square ALWAYS has an ODD number of Odd-factors, and EVEN number of Even-factors. The reverse is also true: if a number has an ODD number of Odd-factors, and EVEN number of Even-factors then it's a perfect square. For example: odd factors of 36 are 1, 3 and 9 (3 odd factor) and even factors are 2, 4, 6, 12, 18 and 36 (6 even factors);

4. Perfect square always has even powers of its prime factors. The reverse is also true: if a number has even powers of its prime factors then it's a perfect square. For example: \(36=2^2*3^2\), powers of prime factors 2 and 3 are even.

For prime numbers \(x\) and \(y\), \(x^3*y^5=z^4\). How many positive factors does positive integer \(z\) have?

A. One B. Two C. Three D. Four E. Five

Notice that \(z^4\) is a perfect square, thus it must have odd number of factors. Since \(z^4\) equals to \(x^3*y^5\), then \(x^3*y^5\) must also have odd number of factors.

Now, if \(x\) and \(y\) are different primes, then the number of factors of \(x^3*y^5\) will be \((3 + 1)(5 + 1) = 24\), which is not odd. Therefore \(x\) and \(y\) MUST be the same prime.

In this case \(x^3*y^5 = x^3*x^5 = x^8 = z^4\).

\(x^8 = z^4\);

\(x^2 = z\).

Since \(x\) is prime, then the number of factors of \(z\) is \((2 + 1) = 3\).

Answer: C

SO Bunuel just to reiterate last line. Does that mean the factors are 1,x,z ?
_________________

For prime numbers \(x\) and \(y\), \(x^3*y^5=z^4\). How many positive factors does positive integer \(z\) have?

A. One B. Two C. Three D. Four E. Five

Notice that \(z^4\) is a perfect square, thus it must have odd number of factors. Since \(z^4\) equals to \(x^3*y^5\), then \(x^3*y^5\) must also have odd number of factors.

Now, if \(x\) and \(y\) are different primes, then the number of factors of \(x^3*y^5\) will be \((3 + 1)(5 + 1) = 24\), which is not odd. Therefore \(x\) and \(y\) MUST be the same prime.

In this case \(x^3*y^5 = x^3*x^5 = x^8 = z^4\).

\(x^8 = z^4\);

\(x^2 = z\).

Since \(x\) is prime, then the number of factors of \(z\) is \((2 + 1) = 3\).

Answer: C

SO Bunuel just to reiterate last line. Does that mean the factors are 1,x,z ?

Absolutely. Say if x = 2, then y = 4 and the factors of 4 are 1, 2, and 4.
_________________

"Notice that z4 is a perfect square, thus it must have odd number of factors. Since z4 equals to x3∗y5, then x3∗y5 must also have odd number of factors."

Question about perfect squares. Would z^6 also be a perfect square?

Also, why do x^3 and y^5 need odd factors, given z^4?

1. Any integer in even power is a perfect square. 2. \(z^4\) is a perfect square. A perfect square has odd number of factors. Since \(z^4\) equals to \(x^3*y^5\), then \(x^3*y^5\) (the product of x^3 and y^5, not the multiples separately) must also have odd number of factors.

Finding the Number of Factors of an Integer:

First make prime factorization of an integer \(n=a^p*b^q*c^r\), where \(a\), \(b\), and \(c\) are prime factors of \(n\) and \(p\), \(q\), and \(r\) are their powers.

The number of factors of \(n\) will be expressed by the formula \((p+1)(q+1)(r+1)\). NOTE: this will include 1 and n itself.

Example: Finding the number of all factors of 450: \(450=2^1*3^2*5^2\)

Total number of factors of 450 including 1 and 450 itself is \((1+1)*(2+1)*(2+1)=2*3*3=18\) factors.

BACK TO YOUR QUESTION: In case of a perfect square, say for \(6^2 = 2^2*3^2\), the powers of primes will be always even, so when counting the number of factors we'd have \((even + 1)(even + 1) = (2 + 1)(2 + 1) = 3*3 = odd*odd = odd\).

Tips about the perfect square: 1. The number of distinct factors of a perfect square is ALWAYS ODD. The reverse is also true: if a number has the odd number of distinct factors then it's a perfect square;

2. The sum of distinct factors of a perfect square is ALWAYS ODD. The reverse is NOT always true: a number may have the odd sum of its distinct factors and not be a perfect square. For example: 2, 8, 18 or 50;

3. A perfect square ALWAYS has an ODD number of Odd-factors, and EVEN number of Even-factors. The reverse is also true: if a number has an ODD number of Odd-factors, and EVEN number of Even-factors then it's a perfect square. For example: odd factors of 36 are 1, 3 and 9 (3 odd factor) and even factors are 2, 4, 6, 12, 18 and 36 (6 even factors);

4. Perfect square always has even powers of its prime factors. The reverse is also true: if a number has even powers of its prime factors then it's a perfect square. For example: \(36=2^2*3^2\), powers of prime factors 2 and 3 are even.

Hope it helps.

Hi Bunuel,

Considering the 4th point in the tips for perfect square (great tips btw), we can directly assume in the question that x and y are the same prime numbers since their powers in the question are odd and z is a perfect square? Thanks!
_________________

Consider giving me Kudos if you find my posts useful, challenging and helpful!

"Notice that z4 is a perfect square, thus it must have odd number of factors. Since z4 equals to x3∗y5, then x3∗y5 must also have odd number of factors."

Question about perfect squares. Would z^6 also be a perfect square?

Also, why do x^3 and y^5 need odd factors, given z^4?

1. Any integer in even power is a perfect square. 2. \(z^4\) is a perfect square. A perfect square has odd number of factors. Since \(z^4\) equals to \(x^3*y^5\), then \(x^3*y^5\) (the product of x^3 and y^5, not the multiples separately) must also have odd number of factors.

Finding the Number of Factors of an Integer:

First make prime factorization of an integer \(n=a^p*b^q*c^r\), where \(a\), \(b\), and \(c\) are prime factors of \(n\) and \(p\), \(q\), and \(r\) are their powers.

The number of factors of \(n\) will be expressed by the formula \((p+1)(q+1)(r+1)\). NOTE: this will include 1 and n itself.

Example: Finding the number of all factors of 450: \(450=2^1*3^2*5^2\)

Total number of factors of 450 including 1 and 450 itself is \((1+1)*(2+1)*(2+1)=2*3*3=18\) factors.

BACK TO YOUR QUESTION: In case of a perfect square, say for \(6^2 = 2^2*3^2\), the powers of primes will be always even, so when counting the number of factors we'd have \((even + 1)(even + 1) = (2 + 1)(2 + 1) = 3*3 = odd*odd = odd\).

Tips about the perfect square: 1. The number of distinct factors of a perfect square is ALWAYS ODD. The reverse is also true: if a number has the odd number of distinct factors then it's a perfect square;

2. The sum of distinct factors of a perfect square is ALWAYS ODD. The reverse is NOT always true: a number may have the odd sum of its distinct factors and not be a perfect square. For example: 2, 8, 18 or 50;

3. A perfect square ALWAYS has an ODD number of Odd-factors, and EVEN number of Even-factors. The reverse is also true: if a number has an ODD number of Odd-factors, and EVEN number of Even-factors then it's a perfect square. For example: odd factors of 36 are 1, 3 and 9 (3 odd factor) and even factors are 2, 4, 6, 12, 18 and 36 (6 even factors);

4. Perfect square always has even powers of its prime factors. The reverse is also true: if a number has even powers of its prime factors then it's a perfect square. For example: \(36=2^2*3^2\), powers of prime factors 2 and 3 are even.

Hope it helps.

Hi Bunuel,

Considering the 4th point in the tips for perfect square (great tips btw), we can directly assume in the question that x and y are the same prime numbers since their powers in the question are odd and z is a perfect square? Thanks!

Just curious multiplication of 2 fractions can be an integer = 2/3 x 3/2 is equal to 1. Is it not possible that x is not equal to y? we find two prime numbers such that forth root of X^3 and Y^5 yield fractions that are reciprocal to each other. Not possible???

P.S. I solved it by thinking that since the question is directly asking how many Prime factor , and because there can be only one correct ans take both X and Y same ( Try to solve with special unique cases when you can)

I think this is a poor-quality question and the explanation isn't clear enough, please elaborate. I can't think of any positive integer z which satisfies the above equation. the only way according me which satisfies the equation is when x and y are same. can explain me with a help of an example?

For prime numbers \(x\) and \(y\), \(x^3*y^5=z^4\). How many positive factors does positive integer \(z\) have?

A. One B. Two C. Three D. Four E. Five

Notice that \(z^4\) is a perfect square, thus it must have odd number of factors. Since \(z^4\) equals to \(x^3*y^5\), then \(x^3*y^5\) must also have odd number of factors.

Now, if \(x\) and \(y\) are different primes, then the number of factors of \(x^3*y^5\) will be \((3 + 1)(5 + 1) = 24\), which is not odd. Therefore \(x\) and \(y\) MUST be the same prime.

In this case \(x^3*y^5 = x^3*x^5 = x^8 = z^4\).

\(x^8 = z^4\);

\(x^2 = z\).

Since \(x\) is prime, then the number of factors of \(z\) is \((2 + 1) = 3\).

Answer: C

I think this is a poor-quality question and the explanation isn't clear enough, please elaborate. I can't think of any positive integer z which satisfies the above equation. the only way according me which satisfies the equation is when x and y are same. can explain me with a help of an example?

It seems that you did not read the solution carefully.

YES, as it's clearly stated in the solution, x and y MUST be the same prime. For example consider x = y = 2. Note here that unless it is explicitly stated otherwise, different variables CAN represent the same number.
_________________