January 19, 2019 January 19, 2019 07:00 AM PST 09:00 AM PST Aiming to score 760+? Attend this FREE session to learn how to Define your GMAT Strategy, Create your Study Plan and Master the Core Skills to excel on the GMAT. January 20, 2019 January 20, 2019 07:00 AM PST 07:00 AM PST Get personalized insights on how to achieve your Target Quant Score.
Author 
Message 
Senior Manager
Joined: 12 Mar 2010
Posts: 277
Concentration: Marketing, Entrepreneurship

Mary and Joe are to throw three dice each. The score is the
[#permalink]
Show Tags
22 Jan 2012, 02:07
Question Stats:
56% (01:29) correct 44% (02:28) wrong based on 247 sessions
HideShow timer Statistics
Mary and Joe are to throw three dice each. The score is the sum of points on all three dice. If Mary scores 10 in her attempt what is the probability that Joe will outscore Mary in his? A. 24/64 B. 32/64 C. 36/64 D. 40/64 E. 42/64
Official Answer and Stats are available only to registered users. Register/ Login.



Math Expert
Joined: 02 Sep 2009
Posts: 52284

Re: Mary and Joe
[#permalink]
Show Tags
22 Jan 2012, 02:32
bsaikrishna wrote: Firstly, I am aware that the following question has been discussed in other posts. But, the reason for posting this question is for me to understand where am I going wrong and also that the posts are quite old.
Mary and Joe are to throw three dice each. The score is the sum of points on all three dice. If Mary scores 10 in her attempt what is the probability that Joe will outscore Mary in his?
A. 24/64 B. 32/64 C. 36/64 D. 40/64 E. 42/64
Could somebody simply explain me the solution? Expected value of one die is 1/6*(1+2+3+4+5+6)=3.5. Expected value of three dice is 3*3.5=10.5. Mary scored 10 so the probability to get the sum more then 10 (11, 12, 13, ..., 18), or more then the average, is the same as to get the sum less than average (10, 9, 8, ..., 3) = 1/2 = 32/64. That's because the probability distribution is symmetrical for this case: The probability of getting the sum of 3 (min possible sum) = the probability of getting the sum of 18 (max possible sum); The probability of getting the sum of 4 = the probability of getting the sum of 17; The probability of getting the sum of 5 = the probability of getting the sum of 16; ... The probability of getting the sum of 10 = the probability of getting the sum of 11; Thus the probability of getting the sum from 3 to 10 = the probability of getting the sum from 11 to 18 = 1/2. Answer: B. Also discussed here: mothermarycomestome86407.htmlHope it's clear.
_________________
New to the Math Forum? Please read this: Ultimate GMAT Quantitative Megathread  All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics



Senior Manager
Joined: 12 Mar 2010
Posts: 277
Concentration: Marketing, Entrepreneurship

Re: Mary and Joe are to throw three dice each. The score is the
[#permalink]
Show Tags
22 Jan 2012, 03:32
Thanks for the reply.
What if the question is to find out the probability of the sum to be greater than 12?
How can we solve it using the same expected value approach?



Math Expert
Joined: 02 Sep 2009
Posts: 52284

Re: Mary and Joe are to throw three dice each. The score is the
[#permalink]
Show Tags
22 Jan 2012, 04:30
bsaikrishna wrote: Thanks for the reply.
What if the question is to find out the probability of the sum to be greater than 12?
How can we solve it using the same expected value approach? Since we know that the probability of getting more than 10 (11, 12, ..., 18), is 1/2 then we should find the probability of getting 11 and 12 and then subtract these values from 1/2. But you won't need this for the GMAT as there will be lengthy calculations involved: 11 can be obtained by combination of the following: 146, 155, 236, 245, 344, 335 > 3!+3!/2!+3!+3!+3!/2!+3!/2!=27. 12 can be obtained by combination of the following: 156, 246, 255, 336, 345, 444 > 3!+3!+3!/2!+3!/2!+3!+1=25. P=1/2(25+27)/6^3=7/27. All combinations: The sum of 3  1; The sum of 4  3; The sum of 5  6; The sum of 6  10; The sum of 7  15; The sum of 8  21; The sum of 9  25; The sum of 10  27; The sum of 11  27 (notice equals to the combinations of the sum of 10); The sum of 12  25 (notice equals to the combinations of the sum of 9); The sum of 13  21 (notice equals to the combinations of the sum of 8); The sum of 14  15 (notice equals to the combinations of the sum of 7); The sum of 15  10 (notice equals to the combinations of the sum of 6); The sum of 16  6 (notice equals to the combinations of the sum of 5); The sum of 17  3 (notice equals to the combinations of the sum of 4); The sum of 18  1 (notice equals to the combinations of the sum of 3). Total = 2*(1+3+6+10+15+21+25+27) = 216 = 6^3. Hope it's clear.
_________________
New to the Math Forum? Please read this: Ultimate GMAT Quantitative Megathread  All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics



Director
Joined: 27 May 2012
Posts: 667

Re: Mary and Joe are to throw three dice each. The score is the
[#permalink]
Show Tags
23 Sep 2012, 07:17
Bunuel wrote: bsaikrishna wrote: Thanks for the reply.
What if the question is to find out the probability of the sum to be greater than 12?
How can we solve it using the same expected value approach? Since we know that the probability of getting more than 10 (11, 12, ..., 18), is 1/2 then we should find the probability of getting 11 and 12 and then subtract these values from 1/2. But you won't need this for the GMAT as there will be lengthy calculations involved: 11 can be obtained by combination of the following: 146, 155, 236, 245, 344, 335 > 3!+3!/2!+3!+3!+3!/2!+3!/2!=27. 12 can be obtained by combination of the following: 156, 246, 255, 336, 345, 444 > 3!+3!+3!/2!+3!/2!+3!+1=25. P=1/2(25+27)/6^3=7/27. All combinations: The sum of 3  1; The sum of 4  3; The sum of 5  6; The sum of 6  10; The sum of 7  15; The sum of 8  21; The sum of 9  25; The sum of 10  27; The sum of 11  27 (notice equals to the combinations of the sum of 10); The sum of 12  25 (notice equals to the combinations of the sum of 9); The sum of 13  21 (notice equals to the combinations of the sum of 8); The sum of 14  15 (notice equals to the combinations of the sum of 7); The sum of 15  10 (notice equals to the combinations of the sum of 6); The sum of 16  6 (notice equals to the combinations of the sum of 5); The sum of 17  3 (notice equals to the combinations of the sum of 4); The sum of 18  1 (notice equals to the combinations of the sum of 3). Total = 2*(1+3+6+10+15+21+25+27) = 216 = 6^3. Hope it's clear. Bunuel I know this can be a lengthy,but can you show how the different combinations of 9 is equal to 25 I am getting 28 also the different combinations of 10 I am getting 36 well as it should be 27 the combinations from 3 to 8 matches with yours but for 9 and 10 I am getting a different answer. Thank you
_________________
 Stne



Veritas Prep GMAT Instructor
Joined: 16 Oct 2010
Posts: 8791
Location: Pune, India

Re: Mary and Joe are to throw three dice each. The score is the
[#permalink]
Show Tags
29 Sep 2012, 21:52
stne wrote: Bunuel I know this can be a lengthy,but can you show how the different combinations of 9 is equal to 25 I am getting 28 also the different combinations of 10 I am getting 36 well as it should be 27
the combinations from 3 to 8 matches with yours but for 9 and 10 I am getting a different answer.
Thank you Responding to a pm: The method you are using is not correct. It is fine for the sum till 8. It fails for 9, 10, 11 and 12. If you enumerate, you will get the same numbers as Bunuel. First let me point out that when you decide to use a particular method, you should fully understand the method. First go through this post to understand why you can use 7C5 or 7C2 to get a sum of 8 (and to get the smaller sums too). http://www.veritasprep.com/blog/2011/12 ... 93part1/Focus on method II of question 2. Notice how you divide n identical objects among m distinct groups. Let’s take the example of a sum of 7. You have to divide 7 among 3 dice such that each die must have at least 1 (no die face can show 0). First step is to take 3 out of the 7 and give one each to the three dice. Now you have 4 left to distribute among 3 distinct groups such that it is possible that some groups may get none of the four. Think of partitioning 4 in 3 groups. This can be done in (4+2)!/4!*2! = 6C2 ways (check out the given link if you do not understand this) This is how you obtain 6C2 (which is the same as 6C4) for the sum of 7. The concept works perfectly till the sum of 8. Thereafter it fails. Now that you know why this method works for some values, can you guess why it fails for others?
_________________
Karishma Veritas Prep GMAT Instructor
Learn more about how Veritas Prep can help you achieve a great GMAT score by checking out their GMAT Prep Options >



Director
Joined: 27 May 2012
Posts: 667

Re: Mary and Joe are to throw three dice each. The score is the
[#permalink]
Show Tags
01 Oct 2012, 07:47
Ok Karishma have understood the split method both in the link above and also given here : howmanypositiveintegerslessthan10000aretherein85291.html#p638873Have also understood how we are able to use combinations , to arrive at the number of combinations for a particular sum of 3 dice throws ( or 2 etc). so as explained by you, lets look at the number of combinations for the sum of 8 when 3 dices are thrown . question was how are we able to use 7C5 to arrive at 21 combinations ? but how come we are not able to use 8C6 to arrive at 25, 8C6 will give 28 which is three more than the number of actual combinations. so basically till the sum of 8 , it fine but above that it seems that the method does not work. for the sum of 8 what exactly are we doing , we have 3 dices .So lets give 1 to each , now we have to distribute 5 among 3 dices. so following the slit method we get 7C2 ( or 7C5 ) = 21 which gives the number of combinations for the sum of 8 when 3 dices are thrown. So if the question was find the probability that the sum of 3 dices is 8 we can do = \(\frac{21}{6^3}\). now for the case of 9 lets try same way , give one to each dice , now we are left with 6, lets distribute 6 among 3 dices so again using the slit method we get 8C2 ( or 8C6)= 28 however we know that this is incorrect. karishma as you can see in spite of my best efforts it seems I still cannot understand why the slit method works till the sum of 8 but not beyond that. we can distribute 6 among 3 dices can't we? 2 2 2 , 1 4 1, etc . Well I think you have to answer this.
_________________
 Stne



Director
Joined: 27 May 2012
Posts: 667

Re: Mary and Joe are to throw three dice each. The score is the
[#permalink]
Show Tags
01 Oct 2012, 08:44
maybe something to do with the minimum and maximum value of a dice? Till 8 we can have minimum 1 and maximum 6 for a dice , 1 1 6 * \(\frac {3!}{2}\) , 3 2 3 *\(\frac {3!}{2}\) , 5 2 1 * 3!,2 2 4 *\(\frac {3!}{2}\) , 1 3 4*3! = 3 +3 + 6 + 3 + 6 = 21 but for 9 we have only 1 6 2 * 3! , 1 3 5 *3!, 1 4 4 *\(\frac {3!}{2}\), 2 2 5 *\(\frac {3!}{2}\) , 3 3 3 , 2 4 3 * 3! = 6+6+3+3+1+6 = 25 but when we use 8C6 or 8C2 for the sum of 9 , we are getting 3 extra cases, what are those extra cases ? If we can find those cases I think we can find the answer to your question.
_________________
 Stne



Veritas Prep GMAT Instructor
Joined: 16 Oct 2010
Posts: 8791
Location: Pune, India

Re: Mary and Joe are to throw three dice each. The score is the
[#permalink]
Show Tags
01 Oct 2012, 21:12
stne wrote: maybe something to do with the minimum and maximum value of a dice? Till 8 we can have minimum 1 and maximum 6 for a dice , 1 1 6 * \(\frac {3!}{2}\) , 3 2 3 *\(\frac {3!}{2}\) , 5 2 1 * 3!,2 2 4 *\(\frac {3!}{2}\) , 1 3 4*3! = 3 +3 + 6 + 3 + 6 = 21
but for 9 we have only 1 6 2 * 3! , 1 3 5 *3!, 1 4 4 *\(\frac {3!}{2}\), 2 2 5 *\(\frac {3!}{2}\) , 3 3 3 , 2 4 3 * 3! = 6+6+3+3+1+6 = 25
but when we use 8C6 or 8C2 for the sum of 9 , we are getting 3 extra cases, what are those extra cases ? If we can find those cases I think we can find the answer to your question. I guess you are on the right track here. In case of 9, you give 1 to each of the 3 dice and you are left with 6. Now when you try to split 6 among the three groups, you will have 3 cases which look like this: 6, 0, 0 0, 6, 0 0, 0, 6 What you are saying here is that first die shows 7, second shows 1 and third shows 1. This case doesn't work, does it? All these 3 cases don't work and you need to remove them.
_________________
Karishma Veritas Prep GMAT Instructor
Learn more about how Veritas Prep can help you achieve a great GMAT score by checking out their GMAT Prep Options >



Director
Joined: 27 May 2012
Posts: 667

Re: Mary and Joe are to throw three dice each. The score is the
[#permalink]
Show Tags
01 Oct 2012, 23:24
VeritasPrepKarishma wrote: stne wrote: maybe something to do with the minimum and maximum value of a dice? Till 8 we can have minimum 1 and maximum 6 for a dice , 1 1 6 * \(\frac {3!}{2}\) , 3 2 3 *\(\frac {3!}{2}\) , 5 2 1 * 3!,2 2 4 *\(\frac {3!}{2}\) , 1 3 4*3! = 3 +3 + 6 + 3 + 6 = 21
but for 9 we have only 1 6 2 * 3! , 1 3 5 *3!, 1 4 4 *\(\frac {3!}{2}\), 2 2 5 *\(\frac {3!}{2}\) , 3 3 3 , 2 4 3 * 3! = 6+6+3+3+1+6 = 25
but when we use 8C6 or 8C2 for the sum of 9 , we are getting 3 extra cases, what are those extra cases ? If we can find those cases I think we can find the answer to your question. I guess you are on the right track here. In case of 9, you give 1 to each of the 3 dice and you are left with 6. Now when you try to split 6 among the three groups, you will have 3 cases which look like this: 6, 0, 0 0, 6, 0 0, 0, 6 What you are saying here is that first die shows 7, second shows 1 and third shows 1. This case doesn't work, does it? All these 3 cases don't work and you need to remove them. Thank you karishma, I am better informed now. This indeed helped.
_________________
 Stne



Intern
Joined: 21 Mar 2011
Posts: 6

Re: Mary and Joe are to throw three dice each. The score is the
[#permalink]
Show Tags
03 Oct 2012, 13:03
Joe's possible outcomes range from 3 (if he throws all 1) to 18 (if he throws all 6).
Each option, from 318, is equally probable if we assume a fair dice. There are 8 outcomes (3, 4, 5, 6, 7, 8, 9, 10) where Joe gets 10 or less, thereby underscoring or tying Mary. There are 8 outcomes (11, 12... 18) in which Joe outscores Mary.
Because there are 8 ways for Joe to outscore, and 8 ways for Joe to underscore or tie and they are all equally probable, there is a 50% chance Joe will outscore Mary.



Math Expert
Joined: 02 Sep 2009
Posts: 52284

Re: Mary and Joe are to throw three dice each. The score is the
[#permalink]
Show Tags
04 Oct 2012, 02:10
wisc4llin wrote: Joe's possible outcomes range from 3 (if he throws all 1) to 18 (if he throws all 6).
Each option, from 318, is equally probable if we assume a fair dice. There are 8 outcomes (3, 4, 5, 6, 7, 8, 9, 10) where Joe gets 10 or less, thereby underscoring or tying Mary. There are 8 outcomes (11, 12... 18) in which Joe outscores Mary.
Because there are 8 ways for Joe to outscore, and 8 ways for Joe to underscore or tie and they are all equally probable, there is a 50% chance Joe will outscore Mary. Unfortunately this approach is not right though for this particular case it gave a correct answer. Consider this: if it were that Mary scored not 10 but 17 then Joe to outscore Mary should get only 18 and according to your approach as there are total of 16 scores possible then the probability of Joe getting 18 would be 1/16. But this is not correct, probability of 18 is (1/6)^3=1/216 not 1/16. This is because not all scores from 3 to 18 have equal # of ways to occur: you can get 10 in many ways but 3 or 18 only in one way (3=1+1+1 and 18=6+6+6). Hope it's clear.
_________________
New to the Math Forum? Please read this: Ultimate GMAT Quantitative Megathread  All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics



Intern
Joined: 18 Jan 2012
Posts: 45
Location: United States

Re: Mary and Joe are to throw three dice each. The score is the
[#permalink]
Show Tags
05 Oct 2012, 09:30
Here is a very simple conceptual techique to solve any such "sum of the dice" problems. When you throw 3 dice, what are the expected ranges of the sum of the values..? Well (1,1,1) is the least sum and (6,6,6) is the max sum. Hence the sum can vary from 3 to 18 How many #s are in the series 3 to 18 inclusive of 18 ? Well 183+1 = 16 values In other words, when any one throws 3 dice, the sum of the values can either be 3,4,5,6,7,8,9....16,17,18. For Joe to win, he has to score a sum that is more than that of Mary, ie Joe has to score between 11 and 18. How many #s are in the series 11 to 18 ? well 1811+1 = 8 We are done Probability = Total # of favorable options / total options = 8 /16 = 32/64 = 1/2 You can use this technique for any problem that has anything to do with sum, product , division of values when multiple dies are thrown? KABOOM... Why dont we try a different problem ? When Mary throws 3 dice, she scores 4. Joe throws a die. What is the probability that the sum of values of the dices on Joe's throw will add up to a prime number that is greater than Mary's score.
_________________
 IT TAKES QUITE A BIT OF TIME AND ENERGY TO POST DETAILED RESPONSES. A KUDOS IS a small but effective way to say "Thank You" 



Math Expert
Joined: 02 Sep 2009
Posts: 52284

Re: Mary and Joe are to throw three dice each. The score is the
[#permalink]
Show Tags
05 Oct 2012, 09:38
hafizkarim wrote: Here is a very simple conceptual techique to solve any such "sum of the dice" problems. When you throw 3 dice, what are the expected ranges of the sum of the values..?
Well (1,1,1) is the least sum and (6,6,6) is the max sum. Hence the sum can vary from 3 to 18 How many #s are in the series 3 to 18 inclusive of 18 ? Well 183+1 = 16 values In other words, when any one throws 3 dice, the sum of the values can either be 3,4,5,6,7,8,9....16,17,18.
For Joe to win, he has to score a sum that is more than that of Mary, ie Joe has to score between 11 and 18. How many #s are in the series 11 to 18 ? well 1811+1 = 8
We are done Probability = Total # of favorable options / total options = 8 /16 = 32/64 = 1/2
You can use this technique for any problem that has anything to do with sum, product , division of values when multiple dies are thrown? KABOOM...
Why dont we try a different problem ? When Mary throws 3 dice, she scores 4. Joe throws a die. What is the probability that the sum of values of the dices on Joe's throw will add up to a prime number that is greater than Mary's score. This is not correct. Please read this post: maryandjoearetothrowthreediceeachthescoreisthe126407.html#p1127808Hope it helps.
_________________
New to the Math Forum? Please read this: Ultimate GMAT Quantitative Megathread  All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics



NonHuman User
Joined: 09 Sep 2013
Posts: 9426

Re: Mary and Joe are to throw three dice each. The score is the
[#permalink]
Show Tags
03 Aug 2018, 00:59
Hello from the GMAT Club BumpBot! Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up  doing my job. I think you may find it valuable (esp those replies with Kudos). Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
GMAT Books  GMAT Club Tests  Best Prices on GMAT Courses  GMAT Mobile App  Math Resources  Verbal Resources




Re: Mary and Joe are to throw three dice each. The score is the &nbs
[#permalink]
03 Aug 2018, 00:59






