MathRevolution
[Math Revolution GMAT math practice question]
(sequence) The terms of \(a\) sequence are defined by a
n=a
n-2+3. Is 411 a term of the sequence?
1) a
1=111
2) a
2=112
Let me present the proof of the insufficiency of statement (2) alone, for the benefit of the most-rigorous students!
\(S\,\,{\rm{sequence:}}\,\,\left\{ \matrix{\\
{{\rm{a}}_{\rm{1}}},{a_2}, \ldots \hfill \cr \\
{a_n} = {a_{n - 2}} + 3\,\,,\,\,{\rm{for}}\,\,{\rm{all}}\,\,n \ge 3 \hfill \cr} \right.\,\,\,\,\,\left( * \right)\)
\(411\,\,\mathop \in \limits^? \,\,\,S\)
\(\left( 2 \right)\,\,{a_2} = 112\,\,\,\mathop \Rightarrow \limits^{\left( * \right)} \,\,\,{a_4} = 112 + 3\,\,\,\, \Rightarrow \,\,\,{a_6} = 112 + 2 \cdot 3\,\,\, \Rightarrow \,\,\,\, \ldots\)
\(411 \ne 112 + k \cdot 3\,,\,\,{\rm{for}}\,\,{\rm{all}}\,\,k\,\, \ge 1\,\,{\mathop{\rm int}} \,\,\,\,\left\{ \matrix{\\
\,\left( {{\mathop{\rm Re}\nolimits} } \right){\rm{Take}}\,\,{{\rm{a}}_{\rm{1}}}{\rm{ = 111}}\,\,\,\, \Rightarrow \,\,\,\left\langle {{\rm{YES}}} \right\rangle \hfill \cr \\
\,\rm{Take}\,\,{a_1} = 112\,\,\,\, \Rightarrow \,\,\,\left\langle {{\rm{NO}}} \right\rangle \hfill \cr} \right.\)
Obs.: once a_1 and a_2 are given, the sequence S is uniquely defined.
This solution follows the notations and rationale taught in the GMATH method.
Regards,
Fabio.