Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

The next set of medium/hard DS questions. I'll post OA's with detailed explanations after some discussion. Please, post your solutions along with the answers.

1. What is the product of three consecutive integers?

(1) At least one of the integers is positive (2) The sum of the integers is less than 6

4. Two machines, A and B, each working at a constant rate, can complete a certain task working together in 6 days. In how many days, working alone, can machine A complete the task?

(1) The average time A and B can complete the task working alone is 12.5 days. (2) It would take machine A 5 more days to complete the task alone than it would take for machine B to complete the task

5. Set A={3-2x, 3-x, 3, 3+x, 3+2x}, where x is an integer. Is the standard deviation of set A more than the standard deviation of set B={3-2x, 3-x, 3, 3+x, 3+2x, y}

(1) The standard deviation of set A is positive (2) y=3

6. The ratio of the number of employees of three companies X, Y and Z is 3:4:8, respectively. Is the average age of all employees in these companies less than 40 years?

(1) The total age of all the employees in these companies is 600 (2) The average age of employees in X, Y, and Z, is 40, 20, and 50, respectively.

7. Was the average (arithmetic mean) temperature in city A in March less than the average (arithmetic mean) temperature in city B in March?

(1) The median temperature in City A in March was less than the median temperature in city B (2) The ratio of the average temperatures in A and B in March was 3 to 4, respectively

8. Two marbles are drawn from a jar with 10 marbles. If all marbles are either red of blue, is the probability that both marbles selected will be red greater than 3/5?

(1) The probability that both marbles selected will be blue is less than 1/10 (2) At least 60% of the marbles in the jar are red

1. What is the product of three consecutive integers?

(1) At least one of the integers is positive Clearly Not sufficient. {0, 1, 2} product=0; {1, 2, 3} product = 6 (2) The sum of the integers is less than 6 Clearly Not sufficient. {0, 1, 2} product=0; {-1, -2, -3} product = 6

(1)+(2) From 2 we know that \(a+(a+1)+(a+2)<6\) so \(a<1\) The three integers are \(a,a+1,a+2\), and at least one is positive (knowing that a is an integer less than 1) : 1)a>0 this cannot be: there is no integer between 0 and 1; 2)a+1>0 a>-1 with a<1 there is one solution a=0 and the product is 0 {0,1,2};3) a+2>0 a>-2 here we have 2 solutions a=-1 and the numbers are {-1,0,1}=>prod=0 or a=0 and the product is 0. IMO C
_________________

It is beyond a doubt that all our knowledge that begins with experience.

2. If x and y are both positive integers and x>y, what the remainder when x is divided by y?

(1) y is a two-digit prime number Not sufficient. ie 22/11 R=0, 23/11 R=1 (2) x=qy+9, for some positive integer q Not sufficient. ie x= 29 = 20+9 = 4*5+9 or 5*4+9 I don't know if 4 or 5 is y and this changes the R.

(1)+(2) If y is a two-digit prime number x=qy+9 for any q says that the R of x/y is 9. x/y=q+9/y IMO C
_________________

It is beyond a doubt that all our knowledge that begins with experience.

Q8) Whether the probably of drawing 2 red marbles from a jar of 10 marbles is > 3/5

From Stmt 1, the probability that both marbles selected will be blue is < 1/10 and since there are only red and blue marbles in the jar

The probability of selecting both marbles red = 1 - LT 1/10 ==> GT 9/10 - Sufficient

From Stmt 2, the number of red marbles in the jar is at least 60 % is >= 6 of 10 marbles in the jar

The probability of selecting both marbles red >= 6/10 * 5/9 >= 0.333 which can be less than 3/5 when there are 6 red marbles and more than 3/5 when there are 9 red marbles - Not Sufficient

9. If x is an integer, is x^2>2x? \(x^2-2x>0\) \(x(x-2)>0\) The question asks is x in one of those intervals? \(x<0 , x>2\)

(1) x is a prime number. Sufficient All prime numbers are greater than 2 so \(x\geq{2}\) so we are in the right interval. What a stupid mistake!Not suff, x can be 2 (2) x^2 is a multiple of 9. Not sufficient. If x=0, x^2 =0 is a multiple of 9 but 0 isn't in the intervals, if x=3 x^2=9 is a multiple of nine and 3 is in our intervals.

C _________________

It is beyond a doubt that all our knowledge that begins with experience.

This implies all the numbers in the set are equal to the average otherwise the Avg of the set A will be more if any one number is more than the Avg. Hence the median of set A in which all the numbers are same as the Avg. is none other than the Avg. value. - Sufficient. From Stmt 2, Avg. of set A is = Amax - Amin of Set A.

This only implies the lower and upper limit of Set A and they could be even or odd number of values in the set. This will result in various values for median within Amin and Amin. - Not Sufficient.

Answer is A _________________

KUDOS is a way to say Thank You

Last edited by nt2010 on 10 Apr 2013, 08:34, edited 1 time in total.

6. The ratio of the number of employees of three companies X, Y and Z is 3:4:8, respectively. Is the average age of all employees in these companies less than 40 years?

(1) The total age of all the employees in these companies is 600 Not sufficient. ie totEmployees= 15 (3+4+8) => average age = 600/15=40 or totEmployees = 30 (2*(3+4+8))=> average age = 600/30=20. In the first case the answer is NO, in the second is YES (2) The average age of employees in X, Y, and Z, is 40, 20, and 50, respectively. \(\frac{(40*3+20*4+50*8)}{15}=\frac{120+80+400}{15}=\frac{600}{15}=40\) If you weight the average age with the ratios you find out that the average age is 40, which is NOT less than 40. Sufficient IMO B
_________________

It is beyond a doubt that all our knowledge that begins with experience.

The next set of medium/hard DS questions. I'll post OA's with detailed explanations after some discussion. Please, post your solutions along with the answers.

1. What is the product of three consecutive integers?

(1) At least one of the integers is positive -Can not determine the values (2) The sum of the integers is less than 6- Can not determine the values

(1)+(2)-> at least one positive and <6 so can't be 1,2,3 -> so 0 must be part of the sequence .

IMO: C

Bunuel wrote:

2. If x and y are both positive integers and x>y, what the remainder when x is divided by y?

(1) y is a two-digit prime number - Can not determine the values (2) x=qy+9, for some positive integer q - Can not determine the values 1+2=>y>9 , as y is two digit ...so remainder 9

IMO: C

Bunuel wrote:

3. The length of the median BD in triangle ABC is 12 centimeters, what is the length of side AC?

(1) ABC is an isosceles triangle No idea about which sides are same (2) AC^2 = AB^2 + BC^2 D is mid point of AC , SO AD= DC=BD = 12 => AC

IMO:B

Bunuel wrote:

4. Two machines, A and B, each working at a constant rate, can complete a certain task working together in 6 days. In how many days, working alone, can machine A complete the task?

(1) The average time A and B can complete the task working alone is 12.5 days.say A can complete in x , then b in = 12.5*2 - x hence \(\frac{1}{x}+\frac{1}{25-x}=\frac{1}{6}=> x= 15 or 10\)

(2) It would take machine A 5 more days to complete the task alone than it would take for machine B to complete the task \(\frac{1}{x}+\frac{1}{x+5}=\frac{1}{6}=> x= 10\) So A 15 days [/color]

IMO: B

Bunuel wrote:

5. Set A={3-2x, 3-x, 3, 3+x, 3+2x}, where x is an integer. Is the standard deviation of set A more than the standard deviation of set B={3-2x, 3-x, 3, 3+x, 3+2x, y}

(1) The standard deviation of set A is positiveNot sufficient (2) y=3So we added 3 to the existing series , where 3 was mean=> SD will decrease

IMO: B

Bunuel wrote:

6. The ratio of the number of employees of three companies X, Y and Z is 3:4:8, respectively. Is the average age of all employees in these companies less than 40 years?

(1) The total age of all the employees in these companies is 600Can 't do anything (2) The average age of employees in X, Y, and Z, is 40, 20, and 50, respectively.can determine \(40*3x + 20*4x + 50 *8x = total age , now dividing by 15x we can get avg age\)

IMO: B

Bunuel wrote:

7. Was the average (arithmetic mean) temperature in city A in March less than the average (arithmetic mean) temperature in city B in March?

(1) The median temperature in City A in March was less than the median temperature in city BNo idea about avg (2) The ratio of the average temperatures in A and B in March was 3 to 4, respectivelyit means Avg(A) < Avg(B)

IMO: B

Bunuel wrote:

8. Two marbles are drawn from a jar with 10 marbles. If all marbles are either red of blue, is the probability that both marbles selected will be red greater than 3/5?

(1) The probability that both marbles selected will be blue is less than 1/10 say there are b blue and 10-b red=> \frac{(bC2)}{(10C2) < 0.1=> b(b-1) < 9 Not sufficient} (2) At least 60% of the marbles in the jar are red So Red GE 6 and Blue LE 4 => for 6 red p(selecting 2 red out of 6) = 0.33 < \frac{3}{5} but if all are red P(red) = 1 > \frac{3}{5} so insufficient

Now adding 1+2 => blue can be 4 ,3,2,1,0 both blue should be less than 0.1 => so b can't be 4 it can only 3,2 So red balls can be 7 or 8-> no definite ans

IMO: E

Bunuel wrote:

9. If x is an integer, is x^2>2x?

(1) x is a prime number.not sufficient can be 2 or 3.. (2) x^2 is a multiple of 9. =>X is a multiple of 3 when we do squaring we multiply with a multiple of 3 and whem we do 2X we multiply with 2 so x^2>2x is always true except x= 0

adding 1 +2 => x can't be zero IMO: C

Bunuel wrote:

10. What is the value of the media of set A?

(1) No number in set A is less than the average (arithmetic mean) of set A. so all the numbers must be same =>median is any number of the set, sufficient to determine (2) The average (arithmetic mean) of set A is equal to the range of set A.not sufficient

IMO: A

Please let me know how many i got correct

Last edited by focus2k13 on 11 Apr 2013, 19:00, edited 1 time in total.

Q6) Is Avg. age of employees of three companies X, Y and Z < 40 years?

Using the unknown multiplier approach, the number of employees in companies X, Y, and Z are 3x, 4x, and 8x respectively

From Stmt 1, the total age of all the employees in 3 companies is 600 - Not Sufficient

If x = 1, the total employees in companies X, Y and Z is 3 + 4 + 8 = 15, so the avg. age of employees is 600 / 15 = 40 years If x = 2, the total employees in companies X, Y and Z is 6 + 8 + 16 = 30, so the avg. age of employees is 600 / 30 = 20 years

From Stmt 2, avg age of X is 40, avg age of Y is 20, and avg age of z is 50 - Sufficient

If x = 1, the total employees in companies X, Y and Z is 3 + 4 + 8 = 15, so the avg. age of employees is (40*3+20*4+50*8) / 15 = 40 years If x = 2, the total employees in companies X, Y and Z is 6 + 8 + 16 = 30, so the avg. age of employees is (40*6+20*8+50*16) / 30 = 40 years

5. Set A={3-2x, 3-x, 3, 3+x, 3+2x}, where x is an integer. Is the standard deviation of set A more than the standard deviation of set B={3-2x, 3-x, 3, 3+x, 3+2x, y}

(1) The standard deviation of set A is positive Not sufficient.ie with x=1 A={1,2, 3, 4, 5} B={1, 2, 3, 4, 5, y} All depends on y. (2) y=3 Not sufficient.ie if x=0 A={3,3,3,3,3} B={3,3,3,3,3,3} STD of B is = STD of A if x=1 A={1,2, 3, 4, 5} B={1, 2, 3, 4, 5, 3} STD of B is < STD of A

(1)+(2) From 1 we know that \(x\neq{0}\) and from 2 that y=3. Sufficient. ie:x=1 : A={1,2, 3, 4, 5} B={1, 2, 3, 4, 5, 3} STD of B is < STD of A x=1000 : A={-1997,-997, 3, 1003, 2003} B={-1997,-997, 3, 1003, 2003, 3} STD of B is < STD of A A and B share 4 elements in common that are different from 3, but because B has one more 3 than X it will have a STD lesser than A
_________________

It is beyond a doubt that all our knowledge that begins with experience.

8. Two marbles are drawn from a jar with 10 marbles. If all marbles are either red of blue, is the probability that both marbles selected will be red greater than 3/5?

(1) The probability that both marbles selected will be blue is less than 1/10 \(\frac{B}{10}*\frac{B-1}{9}<\frac{1}{10}\) \(B^2-B-9<0\) b<3,5xxx so b can be (0,1,2,3) If b=0 the answer is YES; if b=3 the answer is NO (\(\frac{7}{10}*\frac{6}{9}=\frac{42}{90}<\frac{3}{5}\)) Not sufficient. (2) At least 60% of the marbles in the jar are red \(R\geq{6}\). Clearly not sufficient.

(1)+(2) Since together they add no new info IMO E
_________________

It is beyond a doubt that all our knowledge that begins with experience.

1. What is the product of three consecutive integers?

(1) At least one of the integers is positive (2) The sum of the integers is less than 6

My answer C

Stmt 1: Three consecutive integers can be any among (-1,0,1) or (1,2,3) or (99,100,101) etc...no sufficient. Stmt 2: Three consecutive integers can be any among (-100,-99,-98) or (-1,0,1) or (-16,-15,-14) etc...no sufficient.

combining both statements we have only 2 sets (-1,0,1) or (0,1,2). and in ether case product is 0. hence C

2. If x and y are both positive integers and x>y, what the remainder when x is divided by y?

(1) y is a two-digit prime number (2) x=qy+9, for some positive integer q

My answer C.

Stmt 1: Y can be among 11,13,37,61 etc.. and so can X be any number satisfying X>Y.Hence reminder when x is divided by y cannot be uniquely determined.

Stmt 2 : x=qy+9. Say Q=2 and Y=3 .=>X=15 and X/Y leave no reminder. Say Q=3 and Y=4 => X=21 and X/Y leaves a reminder of 1.. Hence insufficient.

combining : we know that Y>9..hence the reminder when X=qy+9/y will always leave a reminder of 9

4. Two machines, A and B, each working at a constant rate, can complete a certain task working together in 6 days. In how many days, working alone, can machine A complete the task?

(1) The average time A and B can complete the task working alone is 12.5 days. (2) It would take machine A 5 more days to complete the task alone than it would take for machine B to complete the task

My answer B

Time taken by A alone is a and by B is b.

Stmt 1: (a+b)/2= 12.5 => a+b=25. together they complete the task in 6 days => (1/a)+(1/b)=1/6 =>(ab)/(a+b) =6 a+b=25 => ab = 150. So (a,b) can be (10,15) or (15,10). insufficient.

Stmt 2: b=a-5.=> (1/a)+(1/a-5) = 1/6. on simplification we get a quadratic a = a^2-17a+30=0 solving , a=15 or 2. a cant be 2 ,as a=2=> b=-3 which on this earth is not possible. Hence a=15. sufficient.

St1: At least 1 integer is positive. Case 1 (1 Integers positive): 1 -- 2 -- 3 (Product = 6) Case 2 (2 Integers positive): 0 -- 1 -- 2 (Product = 0) Case 3 (All 3 Integers positive): -1 -- 0 -- 1 (Product = 0) Hence Not Sufficient

St2: sum of 3 integers < 6 x - 1 + x + x + 1 < 6 => x < 2 if integers are 0, 1, 2 (product = 0) if integers are -6, -2, -1 (product = -12) Insufficient

Together: atleast 1 integer is negative and sum < 6 Case1: if 2 integers >0, 0, 1, 2 (product = 0) Case1: if 1 integer is positive, -1, 0, 1 (product = 0) both case will include a 0 hence the product will be 0 Together sufficient. Ans C

Last edited by srcc25anu on 10 Apr 2013, 14:15, edited 1 time in total.

Campus visits play a crucial role in the MBA application process. It’s one thing to be passionate about one school but another to actually visit the campus, talk...

Its been long time coming. I have always been passionate about poetry. It’s my way of expressing my feelings and emotions. And i feel a person can convey...

Marty Cagan is founding partner of the Silicon Valley Product Group, a consulting firm that helps companies with their product strategy. Prior to that he held product roles at...

Written by Scottish historian Niall Ferguson , the book is subtitled “A Financial History of the World”. There is also a long documentary of the same name that the...