Last visit was: 09 Jul 2025, 11:56 It is currently 09 Jul 2025, 11:56
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
avatar
samsonfred76
Joined: 10 Apr 2012
Last visit: 28 Oct 2019
Posts: 15
Own Kudos:
124
 [2]
Concentration: Finance, Economics
GMAT 1: 760 Q50 V44
GMAT 1: 760 Q50 V44
Posts: 15
Kudos: 124
 [2]
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
doe007
Joined: 16 Dec 2011
Last visit: 03 May 2015
Posts: 232
Own Kudos:
850
 [14]
Given Kudos: 70
Posts: 232
Kudos: 850
 [14]
7
Kudos
Add Kudos
7
Bookmarks
Bookmark this Post
User avatar
doe007
Joined: 16 Dec 2011
Last visit: 03 May 2015
Posts: 232
Own Kudos:
850
 [4]
Given Kudos: 70
Posts: 232
Kudos: 850
 [4]
2
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
User avatar
doe007
Joined: 16 Dec 2011
Last visit: 03 May 2015
Posts: 232
Own Kudos:
850
 [3]
Given Kudos: 70
Posts: 232
Kudos: 850
 [3]
2
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
4. Two machines, A and B, each working at a constant rate, can complete a certain task working together in 6 days. In how many days, working alone, can machine A complete the task?
(1) The average time A and B can complete the task working alone is 12.5 days.
(2) It would take machine A 5 more days to complete the task alone than it would take for machine B to complete the task


Assuming A and B takes x and y days respectively to finish the work alone.
In 6 days, work done by A = 6/x, work done by B = 6/y, total work done by A and B together = 6/x + 6/y
6/x + 6/y = 1 --> 6x + 6y = xy …. (eq1)

1) (x+y)/2 = 12.5 --> x+y = 25
Substituting this in eq1, 6*25 = x(25-x) --> x^2 -25x + 150 = 0 --> (x-10)(x-15) = 0 --> x = 10 or 15
Not sufficient.

2) y = x-5
Substituting this in eq1, 6x + 6x – 30 = x(x-5) --> x^2 -17x + 30 = 0 --> (x-2)(x-15) = 0 --> x = 2 or 15
If x = 2, y become -3 which is impossible. --> x = 15.
Sufficient.

Answer is B.
User avatar
doe007
Joined: 16 Dec 2011
Last visit: 03 May 2015
Posts: 232
Own Kudos:
850
 [7]
Given Kudos: 70
Posts: 232
Kudos: 850
 [7]
2
Kudos
Add Kudos
5
Bookmarks
Bookmark this Post
5. Set A={3-2x, 3-x, 3, 3+x, 3+2x}, where x is an integer. Is the standard deviation of set A more than the standard deviation of set B={3-2x, 3-x, 3, 3+x, 3+2x, y}
(1) The standard deviation of set A is positive
(2) y=3


1) Standard deviation can be positive or zero (in case of x=0). Here the information only says that x is not zero and all elements have different values. But, without knowing y, we cannot conclude. Not sufficient.
2) This says mean of both the sets is 3, no. of elements are 5 and 6 for A and B respectively. If x is not equal to 0, elements in set A will be more spread than those in set B. If x = 0, Standard deviation of both the sets will be zero. Not sufficient.

Together: x is not equal to 0 --> elements in set A will be more spread than those in set B --> standard deviation of set A is more than that of set B. Sufficient.

Answer is C.
User avatar
doe007
Joined: 16 Dec 2011
Last visit: 03 May 2015
Posts: 232
Own Kudos:
850
 [5]
Given Kudos: 70
Posts: 232
Kudos: 850
 [5]
3
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
8. Two marbles are drawn from a jar with 10 marbles. If all marbles are either red of blue, is the probability that both marbles selected will be red greater than 3/5?
(1) The probability that both marbles selected will be blue is less than 1/10
(2) At least 60% of the marbles in the jar are red


1) If there are 4 blue marbles, probability of drawing 2 blue marbles = 4/10 * 3/9 = 2/15 > 1/10
If there are 3 blue marbles, probability of drawing 2 blue marbles = 3/10 * 2/9 = 1/15 < 1/10
So, there are maximum 3 blue marbles and at least 7 red marbles in the jar.
If there are 7 red marbles, probability of drawing 2 red marbles = 7/10 * 6/9 = 7/15 < 3/5
If there are 8 red marbles, probability of drawing 2 red marbles = 8/10 * 7/9 = 28/45 > 3/5
Not sufficient.

2) As seen from calculations against option 1, with 6 or 7 red marbles, probability of drawing 2 red marbles will be less than 3/5, and 8 or more red marbles, probability of drawing 2 red marbles will be more than 3/5.
Not sufficient.

Together: There is no added information found from option 1 and 2 together. Number of red marbles can be 7 or 8 or 9 10 which may result in probability of drawing 2 red marbles to be less than or more than 3/5.
Not sufficient.

Answer is E.
User avatar
doe007
Joined: 16 Dec 2011
Last visit: 03 May 2015
Posts: 232
Own Kudos:
850
 [6]
Given Kudos: 70
Posts: 232
Kudos: 850
 [6]
4
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
9. If x is an integer, is x^2>2x?
(1) x is a prime number.
(2) x^2 is a multiple of 9.


1) If x = 2, x^2 = 2x. For any other integer, x^2 > 2x. Not sufficient.
2) As x^2 is a multiple of 9, x is not 2. So, x^2 > 2x. Sufficient.

Together: As x is prime number, x cannot be 0. As x^2 is multiple of 9, x can be 3, 6, 9, 12, …..
So, x^2 > 2x as x must be > 2. Sufficient.

Answer is C.
User avatar
doe007
Joined: 16 Dec 2011
Last visit: 03 May 2015
Posts: 232
Own Kudos:
850
 [5]
Given Kudos: 70
Posts: 232
Kudos: 850
 [5]
3
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
10. What is the value of the media of set A?
(1) No number in set A is less than the average (arithmetic mean) of set A.
(2) The average (arithmetic mean) of set A is equal to the range of set A.


1) This means all elements in the set have the same value and that is same to mean and median as well. But, we do not know the number. Not sufficient.
2) There are many sets for which average and range will be the same. Examples are: [10,10,30,30] where median is 20, or [2,2,3,3,5] where median is 3. Not sufficient.

Together: This is possible only when all elements have the same value as 0 --> average = range = 0 --> median = 0

Answer is C.

Note: I believe the question should be read as “What is the value of the median of set A?”
User avatar
smyarga
User avatar
Tutor
Joined: 20 Apr 2012
Last visit: 06 Aug 2020
Posts: 82
Own Kudos:
798
 [5]
Given Kudos: 39
Location: Ukraine
GMAT 1: 690 Q51 V31
GMAT 2: 730 Q51 V38
WE:Education (Education)
Expert
Expert reply
GMAT 2: 730 Q51 V38
Posts: 82
Kudos: 798
 [5]
4
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
1. (1) Insufficient. It could be {0,1,2} and the product is 0, or it could be {1,2,3} and their product is 6.
(2) Insufficient. It could be {0,1,2} and the product is 0, or it could be {-3,-2,-1} and the product is -6

(1)+(2) Sufficient. Suppose the least number is n, so the second is (n+1) and the third is (n+2). Their sum must be less than 6: n+(n+1)+(n+2)<6 or 3n+3<6 or n<1. By first statement at least one of the integers must be positive, it means that the largest is positive: n+2>0 or n>-2. So n=-1 or n=0. Therefore, there are two possible sets {-1, 0, 1} or {0, 1, 2}. The product anyway is 0.

The correct answer is C.

2. (1) Insufficient. For x=11 and y=10 the remainder when x is divided by y is 1, for x=12 and y=2 the remainder when x is divied by y is 2.
(2) Insufficient. The main point here is the remainder must be less than the divisor. We don't know is y>9 or y<=9. For y=1 the remainder when x is divided by y is 0, for y=2, x=2q+9 the remainder is 1 when x is divided by 2.

(1)+(2) Sufficient. If y is a two-digit number the when qy is divided by y there is remainder 0, and when 9 is divided by y the remainder is 9, since 9<y. So, x when divided by y gives the remainder 9.

The correct answer C
User avatar
manishuol
Joined: 30 Sep 2012
Last visit: 15 Jun 2014
Posts: 43
Own Kudos:
Given Kudos: 11
Status:Pushing Hard
Affiliations: GNGO2, SSCRB
Location: India
Concentration: Finance, Entrepreneurship
GPA: 3.33
WE:Analyst (Healthcare/Pharmaceuticals)
Products:
Posts: 43
Kudos: 217
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
6. The ratio of the number of employees of three companies X, Y and Z is 3:4:8, respectively. Is the average age of all employees in these companies less than 40 years?

Given that the ratio of the number of employees is 3x:4x:8x, for some positive multiple x.

The questions asks whether (average age)=(total age)/(# of employees)<40, or whether (total age)/(3x+4x+8x)<40, which is the same as: is (total age)<600x?

(1) The total age of all the employees in these companies is 600. The question becomes: is 600<600x? Or is 1<x. We don't know that: f x=1, then the answer is NO but if x>1, then the answer is YES. Not sufficient.

(2) The average age employees in X, Y, and Z, is 40, 20, and 50, respectively. (total age)=40*3x+20*4x+50*8x=600x, so the answer to the question is NO. Sufficient.

Answer: B.
------------------------------------

Hi Bunuel,

Doubt in this Q. Pls help & suggest where am I going Wrong in this Question ......

Q .. The ratio of the number of employees of three companies X, Y and Z is 3:4:8, respectively. Is the average age of all employees in these companies less than 40 years

Now, it gives the ratio of number of employees i.e.; 3:4:8 & then we can take this as real number of employees like 3 employees in Company X, 4 in Y & 8 in company Z ...therefore, we have 3+4+8=15 , 15 employees in total....& average age of employees in company X must be something, lets say its x for Company X, so the total age for company X will be 3x, similarly, for Company Y the average age is y therefore, total age for company Y will be 4y & for Company Z, the total age will be 8z. & the average of the total ages will be 3x+4y+8z/15 ...... & as the question asks, Is the average age of all employees in these companies less than 40 years ?? i.e.; 3x+4y+8z/15 <40 or 3x+4y+8z<600...... so we have to find out if 3x+4y+8z<600 ..... rephrasing complete.

now statement (1) The total age of all the employees in these companies is 600.
that means 3x+4y+8z=600 but we have to check if 3x+4y+8z<600. so it is clearly NO.

statement (2) The average age of employees in X, Y, and Z, is 40, 20, and 50, respectively
therefore, total age = 3*40+4*20+8*50 = 600. as we have to check if 3x+4y+8z<600. so it is also a clear NO. & hence , answer is D.

Now please let me know where am I going wrong. Your help will be appreciated. Thanks !!!!
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 9 July 2025
Posts: 102,609
Own Kudos:
Given Kudos: 97,813
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 102,609
Kudos: 739,880
Kudos
Add Kudos
Bookmarks
Bookmark this Post
manishuol
Bunuel
6. The ratio of the number of employees of three companies X, Y and Z is 3:4:8, respectively. Is the average age of all employees in these companies less than 40 years?

Given that the ratio of the number of employees is 3x:4x:8x, for some positive multiple x.

The questions asks whether (average age)=(total age)/(# of employees)<40, or whether (total age)/(3x+4x+8x)<40, which is the same as: is (total age)<600x?

(1) The total age of all the employees in these companies is 600. The question becomes: is 600<600x? Or is 1<x. We don't know that: f x=1, then the answer is NO but if x>1, then the answer is YES. Not sufficient.

(2) The average age employees in X, Y, and Z, is 40, 20, and 50, respectively. (total age)=40*3x+20*4x+50*8x=600x, so the answer to the question is NO. Sufficient.

Answer: B.
------------------------------------

Hi Bunuel,

Doubt in this Q. Pls help & suggest where am I going Wrong in this Question ......

Q .. The ratio of the number of employees of three companies X, Y and Z is 3:4:8, respectively. Is the average age of all employees in these companies less than 40 years

Now, it gives the ratio of number of employees i.e.; 3:4:8 & then we can take this as real number of employees like 3 employees in Company X, 4 in Y & 8 in company Z ...therefore, we have 3+4+8=15 , 15 employees in total....& average age of employees in company X must be something, lets say its x for Company X, so the total age for company X will be 3x, similarly, for Company Y the average age is y therefore, total age for company Y will be 4y & for Company Z, the total age will be 8z. & the average of the total ages will be 3x+4y+8z/15 ...... & as the question asks, Is the average age of all employees in these companies less than 40 years ?? i.e.; 3x+4y+8z/15 <40 or 3x+4y+8z<600...... so we have to find out if 3x+4y+8z<600 ..... rephrasing complete.

now statement (1) The total age of all the employees in these companies is 600.
that means 3x+4y+8z=600 but we have to check if 3x+4y+8z<600. so it is clearly NO.

statement (2) The average age of employees in X, Y, and Z, is 40, 20, and 50, respectively
therefore, total age = 3*40+4*20+8*50 = 600. as we have to check if 3x+4y+8z<600. so it is also a clear NO. & hence , answer is D.

Now please let me know where am I going wrong. Your help will be appreciated. Thanks !!!!

Given that the ratio of the number of employees of three companies X, Y and Z is 3:4:8, respectively, so the number of employees could be:
3, 4, 8;
3*2=6, 4*2=8, 8*2=16;
3*3=9, 4*3=12, 8*3=24;
3*4=12, 4*4=16, 8*4=32;
...

Notice that the multiple is the same in each case. Thus the ratio of the number of employees is 3x:4x:8x, for some positive multiple x, not 3x:4y:8z.

Hope it's clear.
avatar
Dipankar6435
Joined: 27 Jan 2013
Last visit: 21 Dec 2017
Posts: 58
Own Kudos:
Given Kudos: 38
Status:Breaking my head!!
Location: India
Concentration: General Management, Operations
GMAT 1: 740 Q50 V40
GPA: 3.51
WE:Other (Transportation)
GMAT 1: 740 Q50 V40
Posts: 58
Kudos: 120
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
3. The length of the median BD in triangle ABC is 12 centimeters, what is the length of side AC?

(1) ABC is an isosceles triangle. Clearly insufficient.

(2) AC^2 = AB^2 + BC^2. This statement implies that ABC is a right triangle and AC is its hypotenuse. Important property: median from right angle is half of the hypotenuse, hence BD=12=AC/2, from which we have that AC=24. Sufficient.

Answer: B.

Hi Bunnel
Could you elaborate how this is true - median from right angle is half of the hypotenuse??
Thanks
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 9 July 2025
Posts: 102,609
Own Kudos:
739,880
 [4]
Given Kudos: 97,813
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 102,609
Kudos: 739,880
 [4]
4
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Dipankar6435
Bunuel
3. The length of the median BD in triangle ABC is 12 centimeters, what is the length of side AC?

(1) ABC is an isosceles triangle. Clearly insufficient.

(2) AC^2 = AB^2 + BC^2. This statement implies that ABC is a right triangle and AC is its hypotenuse. Important property: median from right angle is half of the hypotenuse, hence BD=12=AC/2, from which we have that AC=24. Sufficient.

Answer: B.

Hi Bunnel
Could you elaborate how this is true - median from right angle is half of the hypotenuse??
Thanks

Sure.

Imagine a right triangle inscribed in a circle. We know that if a right triangle is inscribed in a circle, then its hypotenuse must be the diameter of the circle, hence half of the hypotenuse is radius. The line segment from the third vertex to the center is on the one hand radius of the circle=half of the hypotenuse and on the other hand as it's connecting the vertex with the midpoint of the hypotenuse it's median too.



Hope it's clear.
avatar
buffaloboy
Joined: 02 Sep 2012
Last visit: 02 Jan 2017
Posts: 25
Own Kudos:
Given Kudos: 3
Location: India
GMAT 1: 710 Q49 V38
WE:Supply Chain Management (Retail: E-commerce)
GMAT 1: 710 Q49 V38
Posts: 25
Kudos: 8
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hi Bunuel.. How to be sure that A={0,0,0,0} and A={1,2,2,3} are the only sets possible from Statement2. Is there any quick method to find this. infact i was unable to find A={1,2,2,3}.
Bunuel
10. What is the value of the media of set A?

(1) No number in set A is less than the average (arithmetic mean) of set A.

Since no number is less than the average, then no number is more than the average, which implies that the list contains identical elements: A={x, x, x, ...}. From this it follows that (the average)=(the median). But we don't know the value of x, thus this statement is NOT sufficient.

(2) The average (arithmetic mean) of set A is equal to the range of set A.

Not sufficient: if A={0, 0, 0, 0}, then (the median)=0, but if A={1, 2, 2, 3}, then (the median)=2.

(1)+(2) From (1) we have that the list contains identical elements. The range of all such sets is 0. Therefore, from (2) we have that (the average)=(the range)=0 and since from (1) we also know that (the average)=(the median), then (the median)=0. Sufficient.

Answer: C.
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 9 July 2025
Posts: 102,609
Own Kudos:
Given Kudos: 97,813
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 102,609
Kudos: 739,880
Kudos
Add Kudos
Bookmarks
Bookmark this Post
buffaloboy
Hi Bunuel.. How to be sure that A={0,0,0,0} and A={1,2,2,3} are the only sets possible from Statement2. Is there any quick method to find this. infact i was unable to find A={1,2,2,3}.
Bunuel
10. What is the value of the media of set A?

(1) No number in set A is less than the average (arithmetic mean) of set A.

Since no number is less than the average, then no number is more than the average, which implies that the list contains identical elements: A={x, x, x, ...}. From this it follows that (the average)=(the median). But we don't know the value of x, thus this statement is NOT sufficient.

(2) The average (arithmetic mean) of set A is equal to the range of set A.

Not sufficient: if A={0, 0, 0, 0}, then (the median)=0, but if A={1, 2, 2, 3}, then (the median)=2.

(1)+(2) From (1) we have that the list contains identical elements. The range of all such sets is 0. Therefore, from (2) we have that (the average)=(the range)=0 and since from (1) we also know that (the average)=(the median), then (the median)=0. Sufficient.

Answer: C.

A={0, 0, 0, 0} and A={1, 2, 2, 3} are NOT the only sets possible. For example A={0, 0, 0} and A={1, 2, 3}. You can find these sets by trial and error.
User avatar
PUNEETSCHDV
Joined: 31 Aug 2011
Last visit: 05 Oct 2018
Posts: 120
Own Kudos:
Given Kudos: 56
Posts: 120
Kudos: 850
Kudos
Add Kudos
Bookmarks
Bookmark this Post
4. Two machines, A and B, each working at a constant rate, can complete a certain task working together in 6 days. In how many days, working alone, can machine A complete the task?

Given that 1/A+1/B=1/6, where A is the time needed for machine A to complete the task working alone and B is the time needed for machine B to complete the task working alone.

Can anyone please explain how 1/A + 1/B = 1/6
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 9 July 2025
Posts: 102,609
Own Kudos:
Given Kudos: 97,813
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 102,609
Kudos: 739,880
Kudos
Add Kudos
Bookmarks
Bookmark this Post
PUNEETSCHDV
4. Two machines, A and B, each working at a constant rate, can complete a certain task working together in 6 days. In how many days, working alone, can machine A complete the task?

Given that 1/A+1/B=1/6, where A is the time needed for machine A to complete the task working alone and B is the time needed for machine B to complete the task working alone.

Can anyone please explain how 1/A + 1/B = 1/6

Two machines, A and B, each working at a constant rate, can complete a certain task working together in 6 days. In how many days, working alone, can machine A complete the task?

A is the time needed for machine A to complete the task working alone, thus the rate of A is 1/A job/day.
B is the time needed for machine B to complete the task working alone, thus the rate of A is 1/B job/day.

Their combined rate is 1/A+1/B, which given to be equal to 1/6.

Theory on work/rate problems: work-word-problems-made-easy-87357.html

All DS work/rate problems to practice: search.php?search_id=tag&tag_id=46
All PS work/rate problems to practice: search.php?search_id=tag&tag_id=66

Hope this helps.
User avatar
envoy2210
Joined: 12 Jul 2013
Last visit: 10 Dec 2016
Posts: 8
Own Kudos:
Given Kudos: 28
Concentration: Economics, Finance
GMAT 1: 700 Q50 V34
GPA: 3.46
GMAT 1: 700 Q50 V34
Posts: 8
Kudos: 3
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
10. What is the value of the media of set A?

(1) No number in set A is less than the average (arithmetic mean) of set A.

Since no number is less than the average, then no number is more than the average, which implies that the list contains identical elements: A={x, x, x, ...}. From this it follows that (the average)=(the median). But we don't know the value of x, thus this statement is NOT sufficient.

(2) The average (arithmetic mean) of set A is equal to the range of set A.

Not sufficient: if A={0, 0, 0, 0}, then (the median)=0, but if A={1, 2, 2, 3}, then (the median)=2.

(1)+(2) From (1) we have that the list contains identical elements. The range of all such sets is 0. Therefore, from (2) we have that (the average)=(the range)=0 and since from (1) we also know that (the average)=(the median), then (the median)=0. Sufficient.

Answer: C..


Bununel, what if Set A only contains one factor "1"?
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 9 July 2025
Posts: 102,609
Own Kudos:
739,880
 [1]
Given Kudos: 97,813
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 102,609
Kudos: 739,880
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
envoy2210
Bunuel
10. What is the value of the media of set A?

(1) No number in set A is less than the average (arithmetic mean) of set A.

Since no number is less than the average, then no number is more than the average, which implies that the list contains identical elements: A={x, x, x, ...}. From this it follows that (the average)=(the median). But we don't know the value of x, thus this statement is NOT sufficient.

(2) The average (arithmetic mean) of set A is equal to the range of set A.

Not sufficient: if A={0, 0, 0, 0}, then (the median)=0, but if A={1, 2, 2, 3}, then (the median)=2.

(1)+(2) From (1) we have that the list contains identical elements. The range of all such sets is 0. Therefore, from (2) we have that (the average)=(the range)=0 and since from (1) we also know that (the average)=(the median), then (the median)=0. Sufficient.

Answer: C..


Bununel, what if Set A only contains one factor "1"?

The range of one element set is 0. If set A={1}, then it's range (0) does not equal to its mean (1). Thus this example contradicts the second statement and therefore is not valid.

Hope it's clear.
User avatar
sanjoo
Joined: 06 Aug 2011
Last visit: 24 Dec 2016
Posts: 266
Own Kudos:
Given Kudos: 82
Posts: 266
Kudos: 646
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
PUNEETSCHDV
4. Two machines, A and B, each working at a constant rate, can complete a certain task working together in 6 days. In how many days, working alone, can machine A complete the task?

Given that 1/A+1/B=1/6, where A is the time needed for machine A to complete the task working alone and B is the time needed for machine B to complete the task working alone.

Can anyone please explain how 1/A + 1/B = 1/6

Two machines, A and B, each working at a constant rate, can complete a certain task working together in 6 days. In how many days, working alone, can machine A complete the task?

A is the time needed for machine A to complete the task working alone, thus the rate of A is 1/A job/day.
B is the time needed for machine B to complete the task working alone, thus the rate of A is 1/B job/day.

Their combined rate is 1/A+1/B, which given to be equal to 1/6.

Theory on work/rate problems: work-word-problems-made-easy-87357.html

All DS work/rate problems to practice: search.php?search_id=tag&tag_id=46
All PS work/rate problems to practice: search.php?search_id=tag&tag_id=66

Hope this helps.

Bunuel..

in question..A+b=6..
but in statement 1..its a+b=25?
are these both not contradict with eachother?

Seems like m missing something :/
   1   2   3   
Moderator:
Math Expert
102609 posts